Maximal displacement of a supercritical branching random walk in a time-inhomogeneous random environment - Archive ouverte HAL
Article Dans Une Revue Stochastic Processes and their Applications Année : 2018

Maximal displacement of a supercritical branching random walk in a time-inhomogeneous random environment

Résumé

The behavior of the maximal displacement of a supercritical branching random walk has been a subject of intense studies for a long time. But only recently the case of time-inhomogeneous branching has gained focus. The contribution of this paper is to analyze a time-inhomogeneous model with two levels of randomness. In the first step a sequence of branching laws is sampled independently according to a distribution on the set of point measures' laws. Conditionally on the realization of this sequence (called environment) we define a branching random walk and find the asymptotic behavior of its maximal particle. It is of the form $V_n -\varphi \log n + o_\P(\log n)$, where $V_n$ is a function of the environment that behaves as a random walk and $\varphi>0$ is a deterministic constant, which turns out to be bigger than the usual logarithmic correction of the homogeneous branching random walk.
Fichier principal
Vignette du fichier
brwre.pdf (465.34 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00874541 , version 1 (27-05-2016)
hal-00874541 , version 2 (18-05-2019)
hal-00874541 , version 3 (17-11-2022)

Licence

Copyright (Tous droits réservés)

Identifiants

Citer

Bastien Mallein, Piotr Miłoś. Maximal displacement of a supercritical branching random walk in a time-inhomogeneous random environment. Stochastic Processes and their Applications, 2018, 125 (10), pp.3958-4019. ⟨10.1016/j.spa.2015.05.011⟩. ⟨hal-00874541v2⟩
329 Consultations
316 Téléchargements

Altmetric

Partager

More