Accurate Visual Features for Automatic Tag Correction in Videos - Archive ouverte HAL
Communication Dans Un Congrès Année : 2013

Accurate Visual Features for Automatic Tag Correction in Videos

Elisa Fromont
François Jacquenet
Baptiste Jeudy

Résumé

We present a new system for video auto tagging which aims at correcting the tags provided by users for videos uploaded on the Internet. Unlike most existing systems, in our proposal, we do not use the questionable textual information nor any supervised learning system to perform a tag propagation. We propose to compare directly the visual content of the videos described by different sets of features such as Bag-Of-visual-Words or frequent patterns built from them. We then propose an original tag correction strategy based on the frequency of the tags in the visual neighborhood of the videos. Experiments on a Youtube corpus show that our method can effectively improve the existing tags and that frequent patterns are useful to construct accurate visual features.
Fichier principal
Vignette du fichier
ida2013_hal.pdf (502.14 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00872301 , version 1 (11-10-2013)

Identifiants

  • HAL Id : hal-00872301 , version 1

Citer

Hoang-Tung Tran, Elisa Fromont, François Jacquenet, Baptiste Jeudy. Accurate Visual Features for Automatic Tag Correction in Videos. International Symposium on Intelligent Data Analysis (IDA'13), 2013, London, United Kingdom. pp.404-415. ⟨hal-00872301⟩
327 Consultations
195 Téléchargements

Partager

More