Random matrix theory applied to low rank stap detection - Archive ouverte HAL
Communication Dans Un Congrès Année : 2013

Random matrix theory applied to low rank stap detection

Résumé

The paper addresses the problem of target detection embedded in a disturbance composed of a low rank Gaussian clutter and a white Gaussian noise. In this context, it is interesting to use an adaptive version of the Low Rank Normalized Matched Filter detector, denoted LR-ANMF, which is a function of the estimation of the projector onto the clutter subspace. In this paper, we show that the LR-ANMF detector based on the sample covariance matrix is consistent when the number of secondary data K tends to infinity for a fixed data dimension m but not consistent when m and K both tend to infinity at the same rate. Using the results of random matrix theory, we then propose a new version of the LR-ANMF which is consistent in both cases. The application of our new detector on STAP (Space Time Adaptive Processing) data shows the interest of our approach.
Fichier principal
Vignette du fichier
PapierEusipcoAC13.pdf (539.97 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00871217 , version 1 (09-10-2013)

Identifiants

  • HAL Id : hal-00871217 , version 1

Citer

Alice Combernoux, Frédéric Pascal, Guillaume Ginolhac, Marc Lesturgie. Random matrix theory applied to low rank stap detection. 21st European Signal Processing Conference (EUSIPCO 2013), Sep 2013, Marrakech, Morocco. pp.1-5. ⟨hal-00871217⟩
195 Consultations
186 Téléchargements

Partager

More