Unsupervised Visual Domain Adaptation Using Subspace Alignment - Archive ouverte HAL
Communication Dans Un Congrès Année : 2013

Unsupervised Visual Domain Adaptation Using Subspace Alignment

Résumé

In this paper, we introduce a new domain adaptation (DA) algorithm where the source and target domains are represented by subspaces described by eigenvectors. In this context, our method seeks a domain invariant feature space by learning a mapping function which aligns the source subspace with the target one. We show that the solution of the corresponding optimization problem can be obtained in a simple closed form, leading to an extremely fast algorithm. We use a theoretical result to tune the unique hyperparameter corresponding to the size of the subspaces. We run our method on various datasets and show that, despite its intrinsic simplicity, it outperforms state of the art DA methods.
Fichier principal
Vignette du fichier
ICCV2013.pdf (197.93 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00869417 , version 1 (09-01-2015)

Identifiants

  • HAL Id : hal-00869417 , version 1

Citer

Basura Fernando, Amaury Habrard, Marc Sebban, Tinne Tuytelaars. Unsupervised Visual Domain Adaptation Using Subspace Alignment. ICCV 2013, Dec 2013, Sydney, Australia. pp.2960-2967. ⟨hal-00869417⟩
311 Consultations
2311 Téléchargements

Partager

More