Asymptotic behaviour of the LS estimator in a nonlinear model with long memory - Archive ouverte HAL
Article Dans Une Revue Journal of the Korean Statistical Society Année : 2011

Asymptotic behaviour of the LS estimator in a nonlinear model with long memory

Résumé

The behaviour of the LS estimator in a nonlinear regression model is investigated, when both the regressors and the errors are long memory processes. The convergence rate, the asymptotic distribution of the LS estimator depend on long memory parameters, Hermite ranks and on expectation of the partial derivative with respect to the parameter of the regression function. We show that the asymptotic distribution of this estimator can be non-normal. An application of these results is presented for testing a structural change in a model with change-point. Numerical simulations confirm the theoretical results.

Dates et versions

hal-00864856 , version 1 (23-09-2013)

Identifiants

Citer

Gabriela Ciuperca. Asymptotic behaviour of the LS estimator in a nonlinear model with long memory. Journal of the Korean Statistical Society, 2011, 40 (2), pp.193-203. ⟨10.1016/j.jkss.2010.09.004⟩. ⟨hal-00864856⟩
166 Consultations
0 Téléchargements

Altmetric

Partager

More