On Dwork's p-adic formal congruences theorem and hypergeometric mirror maps - Archive ouverte HAL
Ouvrages Année : 2017

On Dwork's p-adic formal congruences theorem and hypergeometric mirror maps

Eric Delaygue
Tanguy Rivoal
Julien Roques
  • Fonction : Auteur

Résumé

Using Dwork's theory, we prove a broad generalisation of his famous p-adic formal congruences theorem. This enables us to prove certain p-adic congruences for the generalized hypergeometric series with rational parameters; in particular, they hold for any prime number p and not only for almost all primes. Along the way, using Christol's functions, we provide an explicit formula for the ''Eisenstein constant'' of any globally bounded hypergeometric series with rational parameters. As an application of these results, we obtain an arithmetic statement of a new type concerning the integrality of Taylor coefficients of the associated mirror maps. It essentially contains all the similar univariate integrality results in the litterature.
Fichier principal
Vignette du fichier
mirrorfinal2.pdf (664.76 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00864745 , version 1 (23-09-2013)
hal-00864745 , version 2 (23-09-2013)

Identifiants

Citer

Eric Delaygue, Tanguy Rivoal, Julien Roques. On Dwork's p-adic formal congruences theorem and hypergeometric mirror maps. 246 (1163), 2017, Memoirs of the American Mathematical Society, 978-1-4704-2300-1. ⟨10.1090/memo/1163⟩. ⟨hal-00864745v2⟩
287 Consultations
498 Téléchargements

Altmetric

Partager

More