A Sampling Theory for Compact Sets in Euclidean Space - Archive ouverte HAL Access content directly
Journal Articles Discrete and Computational Geometry Year : 2009

A Sampling Theory for Compact Sets in Euclidean Space

Abstract

We introduce a parameterized notion of feature size that interpolates between the minimum of the local feature size and the recently introduced weak feature size. Based on this notion of feature size, we propose sampling conditions that apply to noisy samplings of general compact sets in euclidean space. These conditions are sufficient to ensure the topological correctness of a reconstruction given by an offset of the sampling. Our approach also yields new stability results for medial axes, critical points, and critical values of distance functions.

Dates and versions

hal-00864493 , version 1 (21-09-2013)

Identifiers

Cite

Frédéric Chazal, David Cohen-Steiner, André Lieutier. A Sampling Theory for Compact Sets in Euclidean Space. Discrete and Computational Geometry, 2009, 41 (3), pp.461-479. ⟨10.1007/s00454-009-9144-8⟩. ⟨hal-00864493⟩
267 View
0 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More