Two new triangles of $q$-integers via $q$-Eulerian polynomials of type $A$ and $B$ - Archive ouverte HAL
Article Dans Une Revue Ramanujan Journal Année : 2013

Two new triangles of $q$-integers via $q$-Eulerian polynomials of type $A$ and $B$

Guo-Niu Han
Frédéric Jouhet
  • Fonction : Auteur
  • PersonId : 845241

Résumé

The classical Eulerian polynomials can be expanded in the basis $t^{k-1}(1+t)^{n+1-2k}$ ($1\leq k\leq\lfloor (n+1)/2\rfloor$) with positive integral coefficients. This formula implies both the symmetry and the unimodality of the Eulerian polynomials. In this paper, we prove a $q$-analogue of this expansion for Carlitz's $q$-Eulerian polynomials as well as a similar formula for Chow-Gessel's $q$-Eulerian polynomials of type $B$. We shall give some applications of these two formulae, which involve two new sequences of polynomials in the variable $q$ with positive integral coefficients. An open problem is to give a combinatorial interpretation for these polynomials.

Dates et versions

hal-00863194 , version 1 (18-09-2013)

Identifiants

Citer

Guo-Niu Han, Frédéric Jouhet, Jiang Zeng. Two new triangles of $q$-integers via $q$-Eulerian polynomials of type $A$ and $B$. Ramanujan Journal, 2013, 31 (1-2), pp.115-127. ⟨10.1007/s11139-012-9389-3⟩. ⟨hal-00863194⟩
147 Consultations
0 Téléchargements

Altmetric

Partager

More