On the p-adic Beilinson conjecture for number fields - Archive ouverte HAL
Article Dans Une Revue Pure and Applied Mathematics Quarterly Année : 2009

On the p-adic Beilinson conjecture for number fields

Résumé

We formulate a conjectural p-adic analogue of Borel's theorem relating regulators for higher K-groups of number fields to special values of the corresponding zeta-functions, using syntomic regulators and p-adic L-functions. We also formulate a corresponding conjecture for Artin motives, and state a conjecture about the precise relation between the p-adic and classical situations. Parts of the conjectures are proved when the number field (or Artin motive) is abelian over the rationals, and all conjectures are verified numerically in some other cases.
Fichier principal
Vignette du fichier
beilinson.pdf (483.54 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00863148 , version 1 (19-09-2013)

Identifiants

  • HAL Id : hal-00863148 , version 1

Citer

Amnon Besser, Paul Buckingham, Rob de Jeu, Xavier-François Roblot. On the p-adic Beilinson conjecture for number fields. Pure and Applied Mathematics Quarterly, 2009, 5 (1), pp.375-434. ⟨hal-00863148⟩
140 Consultations
143 Téléchargements

Partager

More