A free boundary problem modeling electrostatic MEMS: II. nonlinear bending effects - Archive ouverte HAL
Article Dans Une Revue Mathematical Models and Methods in Applied Sciences Année : 2014

A free boundary problem modeling electrostatic MEMS: II. nonlinear bending effects

Résumé

Well-posedness of a free boundary problem for electrostatic microelectromechanical systems (MEMS) is investigated when nonlinear bending effects are taken into account. The model describes the evolution of the deflection of an electrically conductive elastic membrane suspended above a fixed ground plate together with the electrostatic potential in the free domain between the membrane and the fixed ground plate. The electrostatic potential is harmonic in that domain and its values are held fixed along the membrane and the ground plate. The equation for the membrane deflection is a parabolic quasilinear fourth-order equation, which is coupled to the gradient trace of the electrostatic potential on the membrane.
Fichier principal
Vignette du fichier
MEMS_4thOrderParabolicCurvature_110913.pdf (223.4 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00861781 , version 1 (13-09-2013)

Identifiants

Citer

Philippe Laurencot, Christoph Walker. A free boundary problem modeling electrostatic MEMS: II. nonlinear bending effects. Mathematical Models and Methods in Applied Sciences, 2014, 24 (13), pp.2549--2568. ⟨10.1142/S0218202514500298⟩. ⟨hal-00861781⟩
149 Consultations
112 Téléchargements

Altmetric

Partager

More