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A FREE BOUNDARY PROBLEM MODELING ELECTROSTATIC MEMS:

II. NONLINEAR BENDING EFFECTS

PHILIPPE LAURENÇOT AND CHRISTOPH WALKER

Abstract. Well-posedness of a free boundary problem for electrostatic microelectromechanical sys-

tems (MEMS) is investigated when nonlinear bending effects are taken into account. The model
describes the evolution of the deflection of an electrically conductive elastic membrane suspended
above a fixed ground plate together with the electrostatic potential in the free domain between the
membrane and the fixed ground plate. The electrostatic potential is harmonic in that domain and
its values are held fixed along the membrane and the ground plate. The equation for the membrane
deflection is a parabolic quasilinear fourth-order equation, which is coupled to the gradient trace of
the electrostatic potential on the membrane.

1. Introduction

Microelectromechanical systems (MEMS) are miniaturized structures that combine logic ele-
ments and micromechanical components, often acting as sensors or actuators. These tiny devices
enable a myriad of applications and are ubiquitous in a vast range of nowadays electronics like
optical switches, micropumps, micromirrors, displays, or audio components. Idealized modern
MEMS often consist of two components: a rigid ground plate and an electrically conductive thin
elastic membrane that is held fixed along its boundary above the rigid plate. The design of such
devices is based on the interaction between electrostatic and elastic forces. Indeed, applying a
voltage difference between the two components generates a Coulomb force which induces dis-
placements of the membrane and thus transforms electrostatic energy into mechanical energy.
There is, however, an upper limit for the applied voltage beyond which the electrostatic force
cannot be balanced by the elastic response of the membrane and the membrane then touches
down on the rigid plate. This phenomenon is usually referred to as “pull-in” instability or touch-
down. Estimating this pull-in instability threshold is an important issue in applications as it
determines the optimal operating conditions of the MEMS device.

The mathematical description of idealized MEMS devices involves the deflection of the de-
formable membrane above the ground plate and the electrostatic potential in between. From the
energy balance for the membrane, one may derive the equation governing its dynamics, which
involves the gradient of the potential on the membrane. As the potential is harmonic in the re-
gion between the ground plate and the membrane with given values on these two components,
one is thus naturally led to a free boundary problem, see, for example, [25–27] and the references
therein. However, most mathematical analysis so far has been dedicated to simplified variants
thereof for which we refer to the next section.

In this paper we investigate the free boundary problem and specifically take into account
bending effects which result in a fourth-order equation for the membrane deflection. More-
over, different than in most research hitherto, which was restricted to small deformations from
the outset, we shall not neglect curvature effects and hence obtain a quasilinear fourth-order
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Figure 1. Idealized electrostatic MEMS device.

equation for the membrane deflection. As pointed out in [4], retaining gradient terms might
affect the value of the pull-in voltage and is thus important in applications. We will be more
precise in the following section, where we derive the model. Our main results regarding the
local and global well-posedness in dependence on the applied voltage difference λ are stated in
Section 3, where we also present the existence of steady-state solutions for small voltage values.
The corresponding proofs are then contained in the subsequent sections.

2. Derivation of the Model

We begin this section with a review of the free boundary model for electrostatic MEMS,
when bending effects are taken into account. We basically follow the derivation performed
in [26, Chapter 7] but without the a priori assumption of small deformations.

2.1. The Model. We consider a rectangular thin elastic membrane that is coated with a thin
dielectric film and suspended above a rigid plate. The (x̂, ŷ, ẑ)-coordinate system is chosen such
that the ground plate of dimension [−L, L] × [−l, l] in the (x̂, ŷ)-direction is located at ẑ = −H,
while the undeflected membrane with the same dimension [−L, L]× [−l, l] in the (x̂, ŷ)-direction
is located at ẑ = 0. The membrane is held fixed along the edges in the ŷ-direction while the edges
in the x̂-direction are free. The situation is illustrated in Figure 1. Assuming homogeneity in
the ŷ-direction, the membrane may thus be considered as an elastic strip and the ŷ-direction is
omitted in the sequel. Holding the strip at potential V while the rigid plate is grounded induces
a Coulomb force across the device which causes a mechanical deflection of the strip. We let
û = û(t̂, x̂) > −H denote the deflection of the strip at the point x̂ ∈ (−L, L) and time t̂, and we
let ψ̂ = ψ̂(t̂, x̂, ẑ) denote the electrostatic potential at the point (x̂, ẑ) and time t̂. We suppress
time t̂ for the moment.

The electrostatic potential ψ̂ is harmonic in the region

Ω̂(û) := {(x̂, ẑ) ; −L < x̂ < L , −H < ẑ < û(x̂)}

between the ground plate and the strip, that is,

∆ψ̂ = 0 in Ω̂(û) , (2.1)

and is subject to the boundary conditions

ψ̂(x̂,−H) = 0 , ψ̂(x̂, û(x̂)) = V , x̂ ∈ (−L, L) . (2.2)
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The electrostatic energy Êe in dependence of the deflection û is given by

Êe(û) = −
ǫ0

2

∫ L

−L

∫ û(x̂)

−H
|∇ψ̂(x̂, ẑ)|2 dẑ dx̂ ,

with ǫ0 being the permittivity of free space. The surface energy Ês in dependence of the deflection
û is proportional to the tension T and to the change of arc length of the strip, i.e.

Ês(û) = T
∫ L

−L

(

√

1 + (∂x̂û(x̂))2 − 1

)

dx̂ .

Letting Y denote Young’s modulus and I the momentum of inertia, the bending energy Êb is

Êb(û) =
YI

2

∫ L

−L

∣

∣

∣

∣

∣

∂x̂

(

∂x̂ û(x̂)
√

1 + (∂x̂û(x̂))2

)∣

∣

∣

∣

∣

2
√

1 + (∂x̂ û(x̂))2 dx̂ ,

where

∂x̂

(

∂x̂û
√

1 + (∂x̂û)2

)

=
∂2

x̂ û

(1 + (∂x̂û)2)
3/2

is the curvature of the graph of û and ds =
√

1 + (∂x̂û(x̂))2dx̂ its arc length element. The total

energy of the system is then the sum Ê(û) := Êe(û) + Ês(û) + Êb(û). Finally, the strip is clamped
at its ends, so that û(±L) = ∂x̂ û(±L) = 0.

We next introduce the dimensionless variables

x =
x̂

L
, z =

ẑ

H
, u =

û

H
, ψ =

ψ̂

V
,

and denote the aspect ratio of the device by ε := H/L. In these dimensionless variables, we may
then write the total energy E in dependence of the deflection u in the form

E(u) =
YIε2

2L

∫ 1

−1

∣

∣

∣

∣

∣

∂x

(

∂xu(x)
√

1 + ε2(∂xu(x))2

)
∣

∣

∣

∣

∣

2
√

1 + ε2(∂xu(x))2 dx

+ TL
∫ 1

−1

(

√

1 + ε2(∂xu(x))2 − 1

)

dx

−
ǫ0V2

2ε

∫

Ω(u)

(

ε2|∂xψ(x, z)|2 + |∂zψ(x, z)|2
)

d(x, z) ,

(2.3)

with

Ω(u) = {(x, z) ; −1 < x < 1 , −1 < z < u(x)} .

The equilibrium configurations of the device are the critical points of the total energy E and are
given by the solutions to the corresponding Euler-Lagrange equation reading

0 = − ε2 β ∂2
x

(

∂2
xu

(1 + ε2(∂xu)2)5/2

)

−
5

2
ε4 β ∂x

(

∂xu(∂2
xu)2

(1 + ε2(∂xu)2)7/2

)

+ ε2 τ ∂x

(

∂xu

(1 + ε2(∂xu)2)1/2

)

− ε2 λ
(

ε2|∂xψ(x, u(x))|2 + |∂zψ(x, u(x))|2
)

(2.4)

for x ∈ (−1, 1), where we have set

β :=
YI

L
, τ := TL , λ = λ(ε) :=

ǫ0V2

2ε3
.

While the derivations of the first three terms in (2.4) from the bending and stretching energies in
(2.3) follow by classical arguments, the derivation of the last term in (2.4) from the electrostatic
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energy in (2.3) is more involved and relies on shape optimization techniques, see [15, Section 5.3]
for instance (recall that ψ depends non-locally on u according to (2.1)).

For the dynamics of the membrane deflection u = u(t̂, x), it follows from Newton’s second
law that the inertia ρh0∂2

t̂
u (with ρ and h0 denoting, respectively, the membrane’s mass density

per unit volume and thickness) balances the elastic and electrostatic forces, given by the right
hand side of equation (2.4), and we further account for a damping force a∂t̂u which is linearly
proportional to the velocity. Scaling time based on the strength of damping according to t =
t̂ε2/a, setting γ2 := ρh0ε2/a2, and introducing the quasilinear fourth-order operator

K(u) := β ∂2
x

(

∂2
xu

(1 + ε2(∂xu)2)5/2

)

+
5

2
ε2 β ∂x

(

∂xu(∂2
xu)2

(1 + ε2(∂xu)2)7/2

)

− τ ∂x

(

∂xu

(1 + ε2(∂xu)2)1/2

) (2.5)

allow us to write the damping dominated evolution for the strip deflection in the form

γ2∂2
t u + ∂tu +K(u) = −λ

(

ε2|∂xψ(t, x, u(t, x))|2 + |∂zψ(t, x, u(t, x))|2
)

(2.6)

for t > 0 and x ∈ (−1, 1), subject to the clamped boundary conditions

u(t,±1) = ∂xu(t,±1) = 0 , t > 0 , (2.7)

and the initial condition

u(0, x) = u0(x) , x ∈ (−1, 1) . (2.8)

Equations (2.1)-(2.2) in dimensionless variables read

ε2 ∂2
xψ + ∂2

zψ = 0 , (x, z) ∈ Ω(u(t)) , t > 0 , (2.9)

subject to the boundary conditions (linearly extended on the lateral boundaries)

ψ(t, x, z) =
1 + z

1 + u(t, x)
, (x, z) ∈ ∂Ω(u(t)) , t > 0 . (2.10)

The situation for (2.9)-(2.10) is depicted in Figure 2. Let us emphasize here that the above model
is only meaningful as long as the strip does not touch down on the ground plate, that is, the
deflection u satisfies u > −1. This fact not only shows up in the definition of Ω(u) which
becomes disconnected if u reaches the value −1 at some point, but also in the right hand side of
(2.6) which becomes singular at such points since ψ = 1 along z = u(x) with ψ = 0 at z = −1.
This singularity is somehow tuned by the parameter λ, which is proportional to the square of
the applied voltage difference and actually governs the global well-posedness and existence of
steady-state solutions for Equations (2.6)-(2.10). More precisely, it is supposed that, above a
certain critical threshold of λ, solutions to (2.6)-(2.10) cease to exist globally in time and that
there are no longer steady-state solutions.

Before stating our results on the well-posedness of Equations (2.6)-(2.10), we first consider two
simplified versions thereof for which some of the just mentioned physically plausible features
are known to hold.

2.2. Small Deformation Model. Models for MEMS taking into account bending and thus in-
cluding fourth-order operators in space, have mainly been investigated with linearized curva-
ture terms, which correspond to the a priori assumption of small deformations. In this case,
stretching and bending energies are replaced with

Ês(û) =
T

2

∫ L

−L
|∂x̂û(x̂)|2 dx̂ , Êb(û) =

YI

2

∫ L

−L

∣

∣

∣
∂2

x̂û(x̂)
∣

∣

∣

2
dx̂ ,
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Figure 2. Idealized electrostatic MEMS device in one dimension.

and the resulting dimensionless evolution problem (2.6) reduces to a nonlocal semilinear equa-
tion

γ2∂2
t u + ∂tu + β ∂4

xu − τ ∂2
xu = −λ

(

ε2|∂xψ(t, x, u(t, x))|2 + |∂zψ(t, x, u(t, x))|2
)

(2.11)

for t > 0 and x ∈ (−1, 1). In [18], a rather comprehensive investigation of existence and nonexis-
tence issues for this small deformation model may be found. We also refer to [6,7,17] for similar
results for the second-order case without bending and inertia, i.e. when β = γ = 0.

2.3. Small Aspect Ratio Model. A common assumption made in the mathematical analysis
hitherto is a vanishing aspect ratio ε = H/L that reduces the free boundary problem to a single
equation with a right hand side involving a singularity when the strip touches down on the
ground plate. More precisely, setting formally ε = 0 allows one to solve (2.9)-(2.10) explicitly for
the potential ψ = ψ0, that is,

ψ0(t, x, z) =
1 + z

1 + u0(t, x)
, (t, x, z) ∈ [0, ∞)× (−1, 1)× (−1, 0) , (2.12)

where the displacement u = u0 now satisfies the so-called small aspect ratio model

γ2∂2
t u0 + ∂tu0 + β∂4

xu0 − τ∂2
xu0 = −

λ

(1 + u0)2
, x ∈ (−1, 1) , t > 0 ,

u0(t,±1) = 0 , t > 0 ,
u0(0, x) = u0(x) , x ∈ (−1, 1) .

(2.13)

We shall also point out that, besides clamped boundary conditions, other boundary conditions
for u have been considered in the linear case, e.g. pinned boundary conditions

u(t,±1) = ∂2
xu(t,±1) = 0 , t > 0 .
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For details and the present state of the art on this small gap model we refer to [10, 13, 14, 16, 19,
21, 22] and the references therein.

Remark 2.1. The above mentioned models (2.6)-(2.10), (2.7)-(2.11), and (2.13) are quasilinear or semilin-
ear hyperbolic equations with a singular right hand side. When viscous or damping forces dominate over
inertial forces, a commonly made assumption is to neglect second-order time derivatives and set γ = 0.
Then (2.6)-(2.10), (2.7)-(2.11), and (2.13) become parabolic equations and most of the mathematical anal-
ysis performed so far is devoted to this particular case. However, the case γ > 0 has been studied in a few
papers, see [5, 13, 16, 19].

3. Main Results

The main difficulties in studying Equations (2.6)-(2.10) lie in the non-local and singular depen-
dence of the electrostatic potential ψ on the membrane deflection u together with the quasilinear

structure of the operator K for (2.5). In combination with the hyperbolic term γ2∂u
t , the well-

posedness seems far from being obvious. We thus assume from now on that damping forces are
much stronger than inertial forces and neglect the latter by setting γ = 0. To shorten notation,
we let I := (−1, 1).

Theorem 3.1 (Local and Global Well-Posedness). Let γ = 0. Consider an initial condition u0 ∈
H4(I) satisfying the boundary conditions u0(±1) = ∂xu0(±1) = 0 such that u0(x) > −1 for x ∈ I.
Then, the following are true:

(i) For each voltage value λ > 0, there is a unique solution (u, ψ) to (2.6)-(2.10) on the maximal
interval of existence [0, Tm) in the sense that

u ∈ C1
(

[0, Tm), L2(I)
)

∩ C
(

[0, Tm), H4(I)
)

satisfies (2.6)-(2.8) together with

u(t, x) > −1 , (t, x) ∈ [0, Tm)× I ,

and ψ(t) ∈ H2
(

Ω(u(t))
)

solves (2.9)-(2.10) in Ω(u(t)) for each t ∈ [0, Tm).
(ii) If, for each T > 0, there is κ(T) ∈ (0, 1) such that

‖u(t)‖H4(I) ≤ κ(T)−1 , u(t) ≥ −1 + κ(T) in I

for t ∈ [0, Tm) ∩ [0, T], then the solution exists globally in time, that is, Tm = ∞.
(iii) Given κ ∈ (0, 1), there are λ∗(κ) > 0 and M(κ) > 0 such that the solution exists globally

in time provided that λ ∈ (0, λ∗(κ)) and ‖u0‖H4(I) ≤ M(κ). Moreover, in this case u ∈

L∞(0, ∞; H4(I)) with u(t) ≥ −1 + κ in I for t ≥ 0.

Theorem 3.1 is a somewhat paraphrased version of our actual results. We refer to the next
section, in particular, to Proposition 4.5 and Corollary 4.6, for more precise statements under
weaker assumptions. Note that part (iii) of this theorem provides global solutions for small λ,
which do not touch down on the ground plate, not even in infinite time.

Remark 3.2. In contrast to the semilinear case (2.7)-(2.11) treated in [18], where only linear bending
effects were taken into account so that the operator K defined in (2.5) reduces to a linear operator, the

global existence issue in Theorem 3.1 requires an additional smallness condition on u0 in the H4(I)-norm.
This seems to be natural since in the quasilinear model (2.6)-(2.10), the deflection may cease to be a graph
for large times in which case the model itself is no longer valid. Therefore, the occurrence of a finite time
singularity in the quasilinear model could correspond to a touchdown of the strip on the ground plate or
a blowup of some norm of u. This is not the case in the semilinear model, where a finite time singularity
always corresponds to a touchdown of the strip on the ground plate as shown in [18].
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Remarkably, when inertia and bending is neglected (i.e. β = γ = 0) and K thus reduces to
a (quasilinear) second-order operator, solutions to (2.6)-(2.10) cease to exist globally in time for
large values of λ, see [7, 9].

Next, we consider steady-state solutions:

Theorem 3.3 (Steady-State Solutions). There is λs = λs(ε) > 0 such that for each λ ∈ (0, λs)
there exists a locally asymptotically stable steady state (Uλ, Ψλ) to (2.6)-(2.10) with Uλ ∈ H4(I) and
Ψλ ∈ H2(Ω(Uλ)) satisfying −1 < Uλ < 0 in I.

Theorem 3.3 is stated more precisely and in more detail in Proposition 5.1 below. If only small
deformations are taken into account or if bending is neglected, then there are no steady states
for large values of λ, see [8, 18].

4. Well-Posedness

We aim at formulating (2.6)-(2.10) with γ = 0 as a quasilinear Cauchy problem only involving
the deflection u in an appropriate functional setting. For that purpose, let the (subspaces of)

Bessel potential spaces H4θ
D (I) including clamped boundary conditions, if meaningful, be defined

by

H4θ
D (I) :=







































{v ∈ H4θ(I) ; v(±1) = ∂xv(±1) = 0} , 4θ >
3

2
,

{v ∈ H4θ(I) ; v(±1) = 0} ,
1

2
< 4θ <

3

2
,

H4θ(I) , 4θ <
1

2
.

Note that (for example, see [12, 28]) the spaces H4θ
D (I) coincide with the complex interpolation

spaces

H4θ
D (I) =

[

L2(I), H4
D(I)

]

θ
, θ ∈ [0, 1] \

{

1

8
,

3

8

}

, (4.1)

except for equivalent norms. To take into account the singular behavior of the right hand side of
(2.6) as u → −1, we further introduce, for 4θ > 2 and κ ∈ (0, 1), the open subset

Sθ(κ) :=
{

v ∈ H4θ
D (I) ; ‖v‖H4θ

D (I) < 1/κ and − 1 + κ < v(x) for x ∈ I
}

of H4θ
D (I) with closure

Sθ(κ) =
{

v ∈ H4θ
D (I) ; ‖v‖H4θ

D (I) ≤ 1/κ and − 1 + κ ≤ v(x) for x ∈ I
}

.

The following proposition collects the properties of the solutions to the elliptic problem (2.9)-
(2.10) and is the main ingredient to investigate the parabolic problem for the deflection u.

Proposition 4.1. Let 4θ > 2 and κ ∈ (0, 1). For each v ∈ Sθ(κ) there exists a unique solution

ψv ∈ H2(Ω(v)) to

ε2 ∂2
xψ + ∂2

zψ = 0 , (x, z) ∈ Ω(v) ,

ψ(x, z) =
1 + z

1 + v(x)
, (x, z) ∈ ∂Ω(v) ,

with Ω(v) = {(x, z) ; −1 < x < 1 , −1 < z < v(x)}. Moreover, for 4σ ∈ [0, 1/2), the mapping

g : Sθ(κ) −→ H4σ
D (I) , v 7−→ ε2|∂xψv(·, v)|2 + |∂zψv(·, v)|2

is analytic, bounded, and uniformly Lipschitz continuous. If v ∈ Sθ(κ) is even, then so is g(v).
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Proof. The proof is performed by transforming the problem to a fixed rectangle and using elliptic
regularity theory. A complete proof is contained in [7, Proposition 5] with the additional use of

the embedding H4θ
D (I) →֒ W2

q (I) when chosing q ∈ (2, ∞) such that 4θ > 5/2 − 1/q. �

To prove global existence of solutions for small voltage values λ later on, it is useful to separate
from the operator K in (2.5) the ’cubic’ third order term stemming from bending. Its regularity
properties are stated in the next lemma:

Lemma 4.2. Let κ ∈ (0, 1), δ ∈ (0, κ−1], and 4θ ∈ (3, 4]. Then the function

h : Sθ(κ) → H4θ−3(I) , v 7−→
5

2
ε2 β ∂x

(

∂xv(∂2
xv)2

(1 + ε2(∂xv)2)7/2

)

is analytic, and there is c(κ) > 0 such that

‖h(v1)− h(v2)‖H4θ−3(I) ≤ c(κ) δ2 ‖v1 − v2‖H4θ (I)

whenever vj ∈ Sθ(κ) with ‖vj‖H4θ (I) ≤ δ for j = 1, 2.

Proof. This follows from the definition of h and the fact that H4θ−2(I) is an algebra with respect
to pointwise multiplication when 4θ > 3, for example, see [1]. �

Using the definition of the functions g and h from Proposition 4.1 and Lemma 4.2, respectively,
we are in a position to write (2.6)-(2.10) as a quasilinear Cauchy problem for the strip deflection u
as follows:

∂tu + A(u)u = −λ g(u)− h(u) t > 0 , u(0) = u0 , (4.2)

where, for a sufficiently smooth function w on I, the linear operator A(w) ∈ L(H4
D(I), L2(I)) is

given by

A(w)v := β ∂2
x

(

∂2
xv

(1 + ε2(∂xw)2)5/2

)

− τ ∂x

(

∂xv

(1 + ε2(∂xw)2)1/2

)

, v ∈ H4
D(I) . (4.3)

We next study the properties of A(·). Given ω > 0 and k ≥ 1, we let H(H4
D(I), L2(I); k, ω)

denote the set of all A ∈ L(H4
D(I), L2(I)) such that ω +A is an isomorphism from H4

D(I) onto
L2(I) and satisfies the resolvent estimates

1

k
≤

‖(µ +A)v‖L2(I)

|µ| ‖v‖L2(I) + ‖v‖H4
D(I)

≤ k , Re µ ≥ ω , v ∈ H4
D(I) \ {0} .

Then A ∈ H(H4
D(I), L2(I); k, ω) implies A ∈ H(H4

D(I), L2(I)), that is, −A generates an analytic
semigroup on L2(I), see [3, I.Theorem 1.2.2]. The quasilinear operator A from (4.3) enjoys the
following properties.

Lemma 4.3. Given 4θ > 7/2 and κ ∈ (0, 1), there are k := k(κ) ≥ 1 and ω := ω(κ) > 0 such that,

for each w ∈ Sθ(κ), the linear operator A(w) defined in (4.3) is such that

−2ω + A(w) ∈ H(H4
D(I), L2(I); k, ω) .

Moreover, there is a constant ℓ(κ) > 0 such that

‖A(w1)− A(w2)‖L(H4
D(I),L2(I)) ≤ ℓ(κ) ‖w1 − w2‖H4θ (I) , w1, w2 ∈ Sθ(κ) . (4.4)
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Proof. Let w ∈ Sθ(κ) be fixed and put W := 1 + ε2(∂xw)2. Notice that W ∈ C2([−1, 1]) thanks

to the continuous embedding of H4θ(I) in C3([−1, 1]) and that −A(w) reads

−A(w)v = −β∂2
x

(

W−5/2∂2
xv
)

+ τ∂x

(

W−1/2∂xv
)

, v ∈ H4
D(I) .

We then claim that −A(w) is the generator of an analytic semigroup on L2(I). Indeed, consider

its principal part −A∗ defined by A∗v := βW−5/2∂4
xv and the boundary operator B∗v(±1) :=

(

v(±1),−i∂xv(±1)
)

. Noticing that W(±1) = 1, it is readily seen that (A∗,B∗) is normally elliptic

in the sense of [2, Remark 4.2(b)] and thus −A∗|H4
D(I) is the generator of an analytic semigroup

on L2(I). Now, since −A(w) can be considered as a lower order perturbation of −A∗|H4
D(I), the

same is true for −A(w), see [3, I.Theorem 1.3.1] for instance.
Next, since −A(w) has a compact resolvent, its spectrum consists of eigenvalues only. If

µ ∈ C is such an eigenvalue with a corresponding eigenfunction ϕ ∈ H4
D(I, C), then testing the

identity

µϕ + A(w)ϕ = 0

with its complex conjugate ϕ shows that necessarily µ ∈ R with

µ ≤ −(βµ2
1‖W‖−5/2

∞ + τµ1‖W‖−1/2
∞ ) =: −2ς(w) ,

where µ1 = π2/4 is the principal eigenvalue of −∂2
x with homogeneous Dirichlet boundary

conditions in I. Thus, setting

ω = ω(κ) := inf
w∈Sθ(κ)

ς(w) > 0 ,

then, for each w ∈ Sθ(κ), the half plane {µ ∈ C ; Re µ > −2ω} is contained in the resolvent set

of −A(w), and, in particular, −ω + A(w) is an isomorphism from H4
D(I) onto L2(I). Moreover,

given w ∈ Sθ(κ), f ∈ L2(I, C), and µ ∈ C with Re µ > 0, the equation

µv − 2ωv + A(w)v = f

has a unique solution v ∈ H4
D(I). Testing this identity by the complex conjugate v̄ of v, one

derives a resolvent estimate of the form

‖(µ − 2ω + A(w))−1‖L(L2(I)) ≤
c(κ)

|µ|
, w ∈ Sθ(κ) .

Since obviously

‖ − 2ω + A(w)‖L(H4
D(I),L2(I)) ≤ c1(κ) , w ∈ Sθ(κ) ,

it follows from [3, I.Remark 1.2.1(a)] that

−2ω + A(w) ∈ H(H4
D(I), L2(I); k, ω)

for some k = k(κ) ≥ 1. Finally, the Lipschitz continuity (4.4) follows from the definitions of

A(w) and Sθ(κ) and the continuous embedding of H4θ(I) in C3([−1, 1]) by straightforward
computations. �

Clearly, the lower bound w ≥ −1 + κ on I for w ∈ Sθ(κ) is not needed for Lemma 4.3 to hold
true, but is introduced for easier notation later on.

Now, if w is a time-dependent function, then the solution v to the linear Cauchy problem

d

dt
v + A(w(t))v = f (t) , t > s , v(s) = v0 ,
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can no longer be expressed by a variation-of-constant formula involving semigroups. The repre-
sentation formula in this case rather relies on the construction of a parabolic evolution operator
UA(w) and reads

v(t) = UA(w)(t, s)v0 +
∫ t

s
UA(w)(t, r) f (r) dr , t > s .

According to [3], the construction of a (unique) parabolic evolution operator UA(w) is possible if

w is Hölder continuous in t. More precisely:

Proposition 4.4. Let κ ∈ (0, 1) and 4θ > 7/2. Let ℓ(κ) > 0 be as in Lemma 4.3 and, given ρ ∈ (0, 1)
and N, T > 0, define

WT(κ) := {w ∈ C([0, T], H4θ
D (I)) ; ‖w(t)− w(s)‖H4θ

D (I) ≤
N

ℓ(κ)
|t − s|ρ

and w(t) ∈ Sθ(κ) for 0 ≤ t, s ≤ T} ,

which is a complete metric space for the distance

distWT(κ)
(v, w) := max

t∈[0,T]

{

‖v(t)− w(t)‖H4θ
D (I)

}

, v, w ∈ WT(κ) ,

induced by the uniform topology of C([0, T], H4θ
D (I)). Then, there is a constant c0(ρ, κ) > 0 independent

of N and T such that the following is true: for each w ∈ WT(κ), there exists a unique parabolic evolution
operator UA(w)(t, s), 0 ≤ s ≤ t ≤ T, and

‖UA(w)(t, s)‖
L(H4α

D (I),H
4β
D (I))

≤ c∗(κ) (t − s)α−β e−ϑ(t−s) , 0 ≤ s < t ≤ T ,

for 0 ≤ α ≤ β ≤ 1 with 4α, 4β /∈ {1/2, 3/2} with a constant c∗(κ) ≥ 1 depending on N, α, and β but
independent of T, and

−ϑ := c0(ρ, κ)N1/ρ − ω(κ) , (4.5)

where ω(κ) > 0 stems from Lemma 4.3.

Proof. Since

A(w) ∈ Cρ([0, T],L(H4
D(I), L2(I))) , −2ω(κ) + A(w) ⊂ H(H4

D(I), L2(I); k(κ), ω(κ)) (4.6)

with

sup
0≤s<t≤T

‖A(w(t))− A(w(s))‖L(H4
D(I),L2(I))

|t − s|ρ
≤ N (4.7)

for each w ∈ WT(κ) by Lemma 4.3, the assertion follows from [3, II.Theorem 5.1.1& Lemma 5.1.3]
and the interpolation result (4.1). �

We are now in a position to prove the well-posedness of (4.2).

Proposition 4.5 (Local Well-Posedness). Given 4ξ ∈ (7/2, 4], consider an initial condition u0 ∈

H
4ξ
D (I) such that u0(x) > −1 for x ∈ I. Then, for each voltage value λ > 0, there is a unique solution

(u, ψ) to (2.6)-(2.10) on the maximal interval of existence [0, Tm) in the sense that

u ∈ C1
(

(0, Tm), L2(I)
)

∩ C
(

(0, Tm), H4
D(I)

)

∩ C
(

[0, Tm), H
4ξ
D (I)

)

satisfies (2.6)-(2.8) together with

u(t, x) > −1 , (t, x) ∈ [0, Tm)× I ,

and ψ(t) ∈ H2
(

Ω(u(t))
)

solves (2.9)-(2.10) in Ω(u(t)) for each t ∈ [0, Tm). In addition, if ξ = 1, then

u ∈ C1
(

[0, Tm), L2(I)
)

.
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Proof. Let 4ξ ∈ (7/2, 4] and consider an initial condition u0 ∈ H
4ξ
D (I) such that u0(x) > −1 for

x ∈ I. Choose 4θ ∈ (7/2, 4ξ) and set ρ := (ξ − θ)/2 > 0. Clearly, there is κ ∈ (0, 1/2) such that

u0 ∈ Sθ(2κ) ∩ Sξ(2κ) . (4.8)

Let ω(κ) > 0 and c0(ρ, κ) > 0 be as in Lemma 4.3 and Proposition 4.4, respectively, and choose
then N > 0 such that

−ϑ := c0(ρ, κ)N1/ρ − ω(κ) < 0 (4.9)

in (4.5). Moreover, fix 4σ ∈ (0, 1/2) and note that Proposition 4.4 ensures that, for each w ∈
WT(κ), the corresponding parabolic evolution operator UA(w) satisfies

‖UA(w)(t, s)‖L(H4θ
D (I)) + (t − s)θ−σ ‖UA(w)(t, s)‖L(H4σ

D (I),H4θ
D (I)) ≤ c∗(κ) e−ϑ(t−s) , (4.10)

for 0 ≤ s ≤ t ≤ T, where the constant c∗(κ) ≥ 1 is independent of w and T > 0. With this
notation, we are now in a position to set up the fixed point argument. Given δ ∈ (0, 1/κ], we
introduce a subset of WT(κ) defined by

WT(κ, δ) := {w ∈ WT(κ) ; ‖w(t)‖H4θ
D (I) ≤ δ} ,

and note that WT(κ, κ−1) = WT(κ) (the role of δ will become clear later when addressing global
existence issues in the proof of Corollary 4.6). Then Proposition 4.1 and Lemma 4.2 guarantee
the existence of a constant c2(κ) > 0 independent of T > 0 such that

‖g(v(t))− g(w(t))‖H4σ
D (I) +

1

δ2
‖h(v(t))− h(w(t))‖H4σ

D (I) ≤ c2(κ) distWT(κ)
(v, w) (4.11)

and

‖g(v(t))‖H4σ
D (I) +

1

δ3
‖h(v(t))‖H4σ

D (I) ≤ c2(κ) (4.12)

for 0 ≤ t ≤ T whenever v, w ∈ WT(κ, δ) (recall that 4σ < 1/2 < 4θ − 3 and h(0) = 0). Owing to
the definition of parabolic evolution operators, the solution to (4.2) is a fixed point of the map Λ

defined by

Λ(v)(t) := UA(v)(t, 0) u0 −
∫ t

0
UA(v)(t, s)

(

λg
(

v(s)
)

+ h(v(s)
)

ds , t ∈ [0, T] , v ∈ WT(κ) .

We then claim that, for arbitrary λ > 0, the map Λ is a contraction from WT(κ) into itself if
T = T(κ, λ) > 0 is sufficiently small as well as a contraction on WT(κ, δ) for any T > 0 provided

that both λ and the initial condition u0 are sufficiently small. To see this, consider δ ∈ (0, 1/κ]
and v ∈ WT(κ, δ). We infer from (4.6), (4.7), (4.12), the continuous embedding of H4σ

D (I) in L2(I),
and [3, II.Theorem 5.3.1] that there is a constant m∗(κ) > 0 depending only on κ, ξ, and θ such
that, for 0 ≤ s ≤ t ≤ T,

‖Λ(v)(t)− Λ(v)(s)‖H4θ
D (I)

≤ m∗(κ) (t − s)2ρ e−ϑt

(

‖u0‖
H

4θ+8ρ
D (I)

+ ‖λ g(v) + h(v)‖L∞((0,T),H4σ
D (I))

)

≤ m∗(κ)

(

‖u0‖
H

4ξ
D (I)

+ (λ + δ3) c2(κ)

)

(t − s)2ρe−ϑt

≤ m∗(κ)

(

max
0≤r≤T

rρ e−ϑr

) (

‖u0‖
H

4ξ
D (I)

+ (λ + δ3) c2(κ)

)

(t − s)ρ .

(4.13)
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We deduce in particular from (4.13) and the continuous embedding of H4ξ(I) in H4θ(I) that, for
0 ≤ t ≤ T,

‖Λ(v)(t)‖H4θ
D (I) ≤ ‖Λ(v)(t)− Λ(v)(0)‖H4θ

D (I) + ‖u0‖H4θ
D (I)

≤ m∗(κ)

(

max
0≤r≤T

r2ρ e−ϑr

) (

‖u0‖
H

4ξ
D (I)

+ (λ + δ3) c2(κ)

)

+ c‖u0‖
H

4ξ
D (I)

.
(4.14)

Moreover, since u0 ≥ −1 + 2κ in I by (4.8) and since H4θ
D (I) is continuously embedded in L∞(I)

with embedding constant, say, c3 > 0, a further consequence of (4.13) is that, for 0 ≤ t ≤ T,

Λ(v)(t) = u0 −
(

Λ(v)(0)− Λ(v)(t)
)

≥ u0 − c3 ‖Λ(v)(0)− Λ(v)(t)‖H4θ
D (I)

≥ −1 + 2κ − c3 m∗(κ)

(

max
0≤r≤T

r2ρ e−ϑr

) (

‖u0‖
H

4ξ
D (I)

+ (λ + δ3) c2(κ)

)

. (4.15)

Next, if v and w are arbitrary elements in WT(κ, δ), it follows from (4.6), (4.7), the continuous

embedding of H4σ
D (I) in L2(I), and [3, II.Theorem 5.2.1] that there is a constant n∗(κ) > 0

depending only on κ, ξ, and θ such that, for 0 ≤ t ≤ T,

‖Λ(v)(t)− Λ(w)(t)‖H4θ
D (I)

≤ n∗(κ) e−ϑt

{

t1−θ ‖λ (g(v)− g(w)) + h(v)− h(w)‖L∞((0,t),H4σ
D (I))

+ t2ρ ‖A(v)− A(w)‖C([0,T],L(H4
D(I),L2(I)))

[

‖u0‖
H

4ξ
D (I)

+ t1+σ−θ−2ρ ‖λ g(v) + h(v)‖L∞((0,t),H4σ
D (I))

]

}

≤ n∗(κ) t1−θ e−ϑt c2(κ)
(

λ + δ2
)

distWT(κ)
(v, w)

+ n∗(κ) t2ρ e−ϑt
ℓ(κ) distWT(κ)

(v, w)

[

‖u0‖
H

4ξ
D (I)

+ t1+σ−θ−2ρ c2(κ)
(

λ + δ3
)

]

,

where we have used (4.4), (4.11), and (4.12) for the second inequality. Thus there is c4(κ) > 0
such that

distWT(κ)
(Λ(v), Λ(w)) ≤ c4(κ)

(

max
0≤r≤T

r1−θ e−ϑr

)

(

λ + δ2
)

distWT(κ)
(v, w)

+ c4(κ)

(

max
0≤r≤T

r2ρ e−ϑr

)

‖u0‖
H

4ξ
D (I)

distWT(κ)
(v, w)

+ c4(κ)

(

max
0≤r≤T

r1+σ−θ e−ϑr

)

(

λ + δ3
)

distWT(κ)
(v, w) .

(4.16)

Now pick any λ > 0 and take δ = κ−1. It follows from (4.13)-(4.16) and (4.8) that we may
choose T = T(κ, λ) > 0 sufficiently small such that the mapping Λ : WT(κ) → WT(κ) defines
a contraction for the distance distWT(κ)

and thus has a unique fixed point u in WT(κ). Observe

then that, owing to Proposition 4.1, Lemma 4.2, and Lemma 4.3, we have
[

t 7→
(

A(u(t)), λg(u(t))+ h(u(t))
)]

∈ Cρ
(

[0, T],H(H4
D(I), L2(I))× H4σ

D (I)
)

with σ > 0, and u is a mild solution to (4.2) on [0, T] with u0 ∈ H
4ξ
D (I). Thus,

u ∈ C1
(

(0, T], L2(I)
)

∩ C
(

(0, T], H4
D(I)

)

∩ C
(

[0, T], H
4ξ
D (I)

)
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is a solution to (4.2) by [2, Theorem 10.1], which can be extended to some maximal interval

[0, Tm). Note that, when taking ξ = 1, we obtain u ∈ C
(

[0, Tm), H4
D(I)

)

by a further use of [2,

Theorem 10.1] and thus u ∈ C1
(

[0, Tm), L2(I)
)

by (4.2). This proves Proposition 4.5 after setting

ψ(t, ·) := ψu(t)(·) ∈ H2(Ω(u(t))) for t ∈ [0, Tm), the latter being defined in Proposition 4.1. �

We now supplement Proposition 4.5 with a global existence result for small voltage values λ
and a criterion guaranteeing global existence.

Corollary 4.6 (Global Well-Posedness). Given 4ξ ∈ (7/2, 4] and an initial condition u0 ∈ H
4ξ
D (I)

such that u0(x) > −1 for x ∈ I, let (u, ψ) be the solution to (2.6)-(2.10) on the maximal interval of
existence [0, Tm) provided by Proposition 4.5. Then, the following are true:

(i) If, for each T > 0, there is κ(T) ∈ (0, 1) such that

‖u(t)‖H4ξ (I) ≤ κ(T)−1 , u(t) ≥ −1 + κ(T) in I

for t ∈ [0, Tm) ∩ [0, T], then the solution (u, ψ) exists globally in time, that is, Tm = ∞.
(ii) Given κ ∈ (0, 1), there are λ∗(κ) > 0 and q(κ) > 0 such that the solution (u, ψ) exists globally

in time provided that λ ∈ (0, λ∗(κ)) and ‖u0‖H4ξ (I) ≤ q(κ). Moreover, in this case there is

ρ > 0 such that u ∈ BUCρ([0, ∞), H
4ξ
D (I)) with u(t) ≥ −1 + κ in I for t ≥ 0.

Proof. Since T in the proof of Proposition 4.5 depends only on κ and λ, we readily obtain part (i).
It remains to prove part (ii). To this end we note that, since the parameter ϑ defined in (4.9) is

positive, there are λ∗(κ) > 0, M(κ) > 0, and δ = δ(κ) ≤ κ−1 sufficiently small such that (4.13)-
(4.16) guarantee that the mapping Λ : WT(κ, δ) → WT(κ, δ) defines a contraction for each T > 0

provided that λ ∈ (0, λ∗(κ)) and u0 ∈ H
4ξ
D (I) with u0 ≥ −1 + 2κ in I and ‖u0‖

H
4ξ
D (I)

≤ M(κ).

Thus, in this case as well there is a unique fixed point u of Λ belonging to WT(κ, δ) for each
T > 0. By definition of WT(κ, δ), this implies (ii). �

Combining Proposition 4.5 and Corollary 4.6 (with ξ = 1) we deduce Theorem 3.1. We
end this section with an immediate consequence of Proposition 4.1, the uniqueness statement
of Proposition 4.5, and the invariance of the equations with respect to the symmetry (x, z) →
(−x, z).

Corollary 4.7. If u0 = u0(x) in Theorem 4.5 is even with respect to x ∈ I, then, for all t ∈ [0, Tm),
u = u(t, x) and ψ = ψ(t, x, z) are even with respect to x ∈ I as well.

5. Steady-State Solutions: Proof of Theorem 5.1

We now give a more precise statement of the existence of steady-state solutions. The proof of
the following proposition relies on the implicit function theorem and the principle of linearized
stability as well as on the already established regularity of the nonlinearities.

Proposition 5.1 (Steady-State Solutions). Let κ ∈ (0, 1). There is δ = δ(κ) ∈ (0, 1/ε] small enough
such that:

(i) There is an analytic function [λ 7→ Uλ] : [0, δ(κ)) → H4
D(I) such that (Uλ, Ψλ) is the unique

steady state to (2.6)-(2.10) satisfying

‖Uλ‖H4
D(I) ≤ 1/κ with − 1 + κ ≤ Uλ ≤ 0 in I ,

and Ψλ ∈ H2(Ω(Uλ)) when λ ∈ (0, δ). Moreover, Uλ is even with U0 = 0 and Ψλ = Ψλ(x, z)
is even with respect to x ∈ I.
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(ii) Let λ ∈ (0, δ(κ)). There are ω0, m, R > 0 such that for each initial condition u0 ∈ H4
D(I)

satisfying

‖u0 − Uλ‖H4
D(I) < m ,

there is a unique global solution (u, ψ) to (2.6)-(2.10) with

u ∈ C1
(

[0, ∞), L2(I)
)

∩ C
(

[0, ∞), H4
D(I)

)

, ψ(t) ∈ H2
(

Ω(u(t))
)

, t ≥ 0 ,

and u(t) > −1 in I for each t ≥ 0. Moreover,

‖u(t)− Uλ‖H4
D(I) + ‖∂tu(t)‖L2(I) ≤ Re−ω0t‖u0 − Uλ‖H4

D(I) , t ≥ 0 . (5.1)

Proof. Since the operator A(v) ∈ L(H4
D(I), L2(I)) defined in (4.3) is invertible for v ∈ S1(κ)

according to Lemma 4.3, we may define the mapping

F : R × S1(κ) → H4
D(I) , (λ, v) 7→ v + A(v)−1(λg(v) + h(v)) .

Then F is analytic by Proposition 4.1 and Lemma 4.2 with F(0, 0) = 0. Moreover, since the
Fréchet derivative of h vanishes at zero, we have DvF(0, 0) = idH4

D(I). Now, the implicit function

theorem ensures the existence of δ1 = δ1(κ) ∈ (0, 1/ε] and an analytic function

[λ 7→ Uλ] : (−δ1, δ1) → H4
D(I)

such that F(λ, Uλ) = 0 for λ ∈ [0, δ1). Introducing Ψλ := ψUλ
∈ H2(Ω(Uλ)) according to

Proposition 4.1, (Uλ, Ψλ) is the unique steady state to (2.6)-(2.10) satisfying Uλ ∈ S1(κ). The
non-positivity of Uλ readily follows from [20, Section 4.2] and the fact that g(Uλ) ≥ 0. That
Uλ = Uλ(x) and Ψλ = Ψλ(x, z) is even in x ∈ I are immediate consequences of uniqueness
and the invariance of the equations with respect to the symmetry (x, z) → (−x, z). This proves
Proposition 5.1(i).

It remains to prove the asymptotic stability of the steady states (Uλ, Ψλ) as claimed in Propo-
sition 5.1(ii). We proceed similarly as in [7, Theorem 3(ii)] by using the principle of linearized
stability. Let λ ∈ (0, δ1(κ)) and define Q ∈ C∞(S1(κ), L2(I)) by

Q(u) := −A(u)u − λg(u)− h(u) ,

which satisfies in particular Q(Uλ) = 0. The linearization of (4.2) around Uλ then reads

d

dt
v − DuQ(Uλ)[v] = Gλ(v) := Q(v + Uλ)− DuQ(Uλ)[v] ,

so that u = v + Uλ solves (4.2). According to Proposition 4.1, the map Gλ ∈ C∞(Oλ, L2(I)) is

defined on some open neighborhood Oλ of zero in H4
D(I) such that Uλ + Oλ ⊂ S1(κ). In view

of (4.2) we obtain
d

dt
v +

(

A(Uλ) + Bλ

)

v = Gλ(v) , (5.2)

where

Bλv : = λ Dug(Uλ)[v] + DuA(Uλ)[v]Uλ + Duh(Uλ)[v] , v ∈ H4
D(I) ,

satisfies
‖Bλ‖L(H4

D(I),L2(I)) ≤ c(κ)
(

λ + ‖Uλ‖
2
H4

D(I)

)

for some c(κ) > 0 independent of λ small, say, λ ∈ [0, δ1/2]. The continuity of λ 7→ Uλ then
implies

‖Bλ‖L(H4
D(I),L2(I)) → 0 as λ → 0 .

Since Uλ ∈ S1(κ), we have −2ω(κ) + A(Uλ) ∈ H(H4
D(I), L2(I); k(κ), ω(κ)) by Lemma 4.3. In

particular, −A(Uλ) is the generator of an analytic semigroup on L2(I) with spectral bound not
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exceeding −ω(κ) < 0. Consequently, it follows from [3, I.Proposition 1.4.2] that −(A(Uλ) + Bλ)
is the generator of an analytic semigroup on L2(I) and there is ω1 = ω1(κ) > 0 such that the
complex half plane {z ∈ C ; Re z ≥ −ω1} is included in the resolvent set of −(A(Uλ) + Bλ)
provided that λ > 0 is sufficiently small. Now we may apply [23, Theorem 9.1.2] and conclude
that the statement (ii) of Proposition 5.1 holds true for λ ∈ (0, δ(κ)) for some δ(κ) > 0 possibly
smaller than δ1. �
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