On helicoidal ends of minimal surfaces
Résumé
This article analyzes the behaviour of helicoidal ends of properly embedded minimal surfaces, namely properly embedded infinite total curvature minimal annuli of parabolic type, satisfying a growth condition on the curvature via the Gauss map, and a geometric transversality condition. Then we show that embeddedness forces the end to be asymptotic either to a plane, or a helicoid or a spiraling helicoid. In all three cases, the Gauss map can be described in very simple terms. Finally this local result yields a global corollary stating the rigidity of embedded minimal helicoids.
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...