Attitude Stabilization of a Quadrotor by Means of Event-Triggered Nonlinear Control
Résumé
Event-triggered control is a resource-aware sampling strategy that updates the control value only when a certain condition is satis ed, which denotes event instants. Such a technique allows to reduce the control computational cost and communications. In this paper, a quaternion-based feedback is developed for event-triggered attitude stabilization of a quadrotor mini-helicopter. The feedback is derived from the universal formula for eventtriggered stabilization of general nonlinear systems a ne in the control. The proposed feedback ensures the asymptotic stability to the desired attitude. Real-time experiments are carried out in order to show the convergence of the quadrotor states to the desired attitude as well as the robustness with respect to external disturbances. Results show that the proposed control can reduce by 80 % the communications of the embedded system without sacri cing performance of the whole system. To the best of the authors' knowledge, this is the rst time that a nonlinear event-triggered controller is experimentally applied to the attitude stabilization of an unmanned aircraft system.
Domaines
Automatique / RobotiqueOrigine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...