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Abstract Event-triggered control is a resource-aware sampling strategy that
updates the control value only when a certain condition is satisfied, which
denotes event instants. Such a technique allows to reduce the control compu-
tational cost and communications. In this paper, a quaternion-based feed-
back is developed for event-triggered attitude stabilization of a quadrotor
mini-helicopter. The feedback is derived from the universal formula for event-
triggered stabilization of general nonlinear systems affine in the control. The
proposed feedback ensures the asymptotic stability to the desired attitude.
Real-time experiments are carried out in order to show the convergence of the
quadrotor states to the desired attitude as well as the robustness with respect
to external disturbances. Results show that the proposed control can reduce
by 80 % the communications of the embedded system without sacrificing per-
formance of the whole system. To the best of the authors’ knowledge, this
is the first time that a nonlinear event-triggered controller is experimentally
applied to the attitude stabilization of an unmanned aircraft system.

Keywords Event-triggered · attitude control · quaternion · quadrotor

1 INTRODUCTION

A cyber-physical system (CPS) is an integration of computation with physical
processes. Embedded computers and networks monitor and control the physi-
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cal processes, usually with feedback loops where physical processes affect com-
putations and vice versa. The intersection between physical and information-
driven functions (cyber) represents a challenge and results in innovation, see
[1]. For CPS, the use of digital platforms and networks emerges as an obvious
trend to save space, weight and energy. However, digital implementations can
result in additional challenges, like determining how frequently the control sig-
nal needs to be updated and applied such that the stability properties are still
guaranteed.
Among many CPSs, Unmanned Aerial Vehicles (UAVs) have received grow-
ing interest in industrial and academic research. They may prove useful for
many civilian missions such as video supervision of road traffic, surveillance
of urban districts, forest fire detection or building inspection. Furthermore,
among miniature rotorcraft-based UAVs, the mini quadrotor helicopter gives
rise to great interest because of its high manoeuvrability, its payload capac-
ity and its ability to hover, as explained in [2]. Such a Vertical Take-Off and
Landing (VTOL) vehicle has some advantages over conventional helicopters:
owing to symmetry, it is relatively simple to design and construct. In fact, the
quadrotor is an under-actuated dynamic system with four input forces and
six output coordinates (attitude and position). However, this system can be
broken down into two subsystems, one defining the translation movement and
the other one the rotation movement. These subsystems are coupled in cascade
since the translational subsystem depends on the rotational one, but the rota-
tional subsystem is independent of the translational one. Self-governing flights
require the generation of low-level control signals sent to actuators as well
as decision-making related to guidance, navigation. Low-level flight control is
known as attitude control and it is responsible for maintaining the desired
vehicle orientation. Consequently, the attitude controller design is, in itself, a
challenge.
Some linear and nonlinear control techniques have been applied for the atti-
tude stabilization of the quadrotor mini-helicopter, like for example in [3–9].
This list is of course far from being exhaustive. Actually, all proposed attitude
control laws previously listed were developed in continuous time framework
and their implementation under digital platforms is carried out by means of
“emulation”. This procedure consists in implementing a continuous time con-
trol algorithm with a constant and sufficiently small periodic sampling period.
However, this approach can be constrained by hardware and reducing the
sampling period to a level that guarantees acceptable closed-loop performance
may be impossible. The framework for the design of stabilizing controllers via
the analysis of discrete-time systems has been widely investigated for linear
systems e.g. [10,11]. In spite of the effort carried out to extend these results
to nonlinear systems, the difficulty to obtain a nonlinear discrete-time model
remains an important obstacle [12]. Then, some approaches based on an ap-
proximation of the system [13] or a redesign of the control [14] where developed
but it still remains complex.
In the recent years, some works addressed resource-aware implementations
of the control law using event-triggered sampling, where the control value is
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updated only when some events occur. An event is usually generated by an
event-function that indicates if the control signal must be updated or not. Typ-
ical event-detection mechanisms are functions on the variation of the state (or
at least the output) of the system, like in [15–20]. In [21] in particular, it is
proved that such an approach reduces the number of sampling instants for the
same final performance. An event-triggered paradigm hence calls for resources
whenever they are indeed necessary. In the same idea, an alternative approach
consists in taking events related to the variation of a Lyapunov function – and
consequently to the state too – between the current state and its value at the
last sampling, like in [22], or in taking events related to the time derivative of
the control Lyapunov function (CLF), like in [23,24]. In this latter case, the
updates ensure the strict decrease of a CLF, and so is ensured the asymptoti-
cally stability of the closed-loop system.
Although the advantages of event-triggered control are well-motivated and the-
oretical results show its potential, few results in the framework of unmanned
aircraft systems have been presented in literature, e.g. [25,26]. In these works
linear event-triggered controllers are proposed for attitude stabilization of a
3D helicopter model. Unfortunately, these controllers only work in a limited
attraction region of the state-space. More in the spirit of task scheduling and
decision, one can find works dealing with hybrid modeling and control of UAVs
[27,28]. In these works flight modes such as Take off, Landing, Hovering, and
Cruising change when there is an event. Hybrid modeling and control com-
bines continuous dynamics with discrete automata which differs of the present
work.
In this paper, we develop an event-triggered non linear control strategy for
the attitude stabilization of a mini quadrotor helicopter. The update policy
is driven by events issuing from the time derivative of a CLF. The feedback
is quaternion-based and it is derived from the universal formula for event-
triggered stabilization of general nonlinear systems affine in the control [24].
For sake of simplicity, we only consider in this paper null stabilization with
initial time instant t0 = 0. The proposed feedback ensures the asymptotic
stability and it is smooth everywhere except at the origin. Moreover, we pro-
pose to test such a proposal on a real-time system. The idea is to show that
an event-triggered scheme could reduce the number of control functions calls
even in such a case where rotor blades have to be actively controlled. To the
best of the authors’ knowledge this is the first time that such a method is
experimentally tested.
The paper is organized as follows. First, in section 2 we present some mathe-
matical definitions and the event-based control strategy for affine in the control
nonlinear systems is detailed. The quaternion notion is also introduced and
the quadrotor mini-helicopter model is given. The section 3 states the problem
and presents the design of the control law for the attitude stabilization. Some
experimental results are presented in section 4 and discussions finally conclude
the paper.
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2 PRELIMINARIES

In this section some facts for event-triggered stabilization of general nonlin-
ear systems affine in the control [24] are reviewed and the system model is
introduced [8].

2.1 A universal formula for event-triggered stabilization

In this paper, the study will focus on affine in the control dynamical systems
defined by:

ẋ = f(x) + g(x)u (1)

where x ∈ X ⊂ Rn, u ∈ U ⊂ Rp, and f a Lipschitz function vanishing at the
origin. For sake of simplicity, we only consider in this paper null stabilization
with initial time instant t0 = 0. If the system (1) admits an asymptotic sta-
bilizing feedback k : X → U then there exists a Control Lyapunov Function
V : X → R, that is a smooth function, positive definite and such that:

V̇ =
∂V

∂x
f(x) +

∂V

∂x
g(x)k(x) (2)

It is worth noting that if k is assumed to be smooth, then V is known to exist
and to be as smooth as k. In the present paper, only the smoothness of V is
required which is less restrictive than the one of k.

Event-triggered feedback usually means a set of two functions:

– an event function e : X × X → R that indicates if one needs (e ≤ 0) or
not (e > 0) to update the control value. Event function e takes the current
state x as input and a memory m of x last time e became negative.

– a feedback function k : X → U . Which is used as in the classical frame.

We recall here the definition of semi-uniform Minimum Sampling Interval
(MSI) event-triggered control:

Definition 1 [24] An event-triggered feedback (k, e) is said to be semi-uniformly
MSI if for all δ > 0, and all x0 in the ball of radius δ centred at the origin B(δ)
the inter-execution times, that is the duration between two successive events,
can be below bounded by some τ > 0.

Remark 1 This minimal sampling period is useful for implementation purpose
but also when the feedback k is discontinuous for robustness purpose [29] as
this one proposed in the present paper.
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It is known that a nonlinear system of the form (1) with a semi-uniformly MSI
event-based feedback (e, k), the solution of (1) starting in x0 ∈ X at t = 0 is
defined for all positive t as the solution of the differential system:

ẋ = f(x) + g(x)k(m)) (3){
m = x if e(x,m) ≤ 0, x 6= 0
ṁ = 0 elsewhere

(4)

withx(0) := x0 and m(0) = x(0) (5)

Theorem 2 (Event-Triggered universal formula ) If there exists a CLF
for system (1), then the event-based feedback (e, k) defined below is semi-
uniformly MSI, smooth on X\ {0}, and such that:

∂V

∂x
f(x) +

∂V

∂x
g(x)k(m) < 0, x ∈ X\ {0} (6)

where m is defined in (4) and:

ki(x) := −bi(x)δi(x)γ(x) (7)

e(x,m) := −a(x)− b(x)k(m)

−σ
√
a(x)2 + θ̄(x)b(x)∆(x)b(x)T (8)

where

– a(x) := ∂V
∂x f(x) and b(x) := ∂V

∂x g(x),
– x → ∆(x) := diag(δ1(x), δ2(x), . . . , δp(x)) is a smooth function of X\ {0}

to Rp×p, positive definite on:

S := {x ∈ X | ‖b(x)‖ 6= 0}

– x → θ̄(x) is a smooth positive function of X to R, such that θ̄(x) ‖∆(x)‖
vanishes at the origin, and ensuring on S\ {0} the inequality a(x)2 +
θ̄(x)b(x)∆(x)b(x)T > 0

– σ is a control parameter in [0, 1[,
– γ : X → R is defined by:

γ(x) :=

{
a(x)+

√
a(x)2+θ̄(x)b(x)∆(x)b(x)T

b(x)∆(x)b(x)T
if x ∈ S

0 if x /∈ S
(9)

Proof Proof was given in [24].
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2.2 Unit quaternions and attitude kinematics

Consider two orthogonal right-handed coordinate frames: the body coordinate
frame, Eb = [e b

1 , e
b

2 , e
b

3 ], located at the center of mass of the rigid body and

the inertial coordinate frame, Ef = [e f
1 , e

f
2 , e

f
3 ], located at some point in

the space. The rotation of the body frame Eb with respect to the fixed frame
Ef is represented by the attitude matrix R ∈ SO(3) = {R ∈ R3×3 : RTR =
I, detR = 1}.
The cross product between two vectors ξ, χ ∈ R3 is represented by a matrix
multiplication [ξ×]χ = ξ × χ, where [ξ×] is the well known skew-symmetric
matrix.
The n-dimensional unit sphere embedded in Rn+1 is denoted as Sn = {x ∈
Rn+1 : xTx = 1}. Members of SO(3) are often parametrized in terms of a
rotation β ∈ R about a fixed axis ev ∈ S2 by the map U : R × S2 → SO(3)
defined as

U(β, ev) := I3 + sin(β)[e×v ] + (1− cos(β))[e×v ]2 (10)

Hence, a unit quaternion, q ∈ S3, is defined as

q :=

(
cos β2
ev sin β

2

)
=

(
q0

qv

)
∈ S3 (11)

qv = (q1 q2 q3)T ∈ R3 and q0 ∈ R are known as the vector and scalar parts
of the quaternion respectively. q represents an element of SO(3) through the
map R : S3 → SO(3) defined as

R := I3 + 2q0[q×v ] + 2[q×v ]2 (12)

Note that R = R(q) = R(−q) for each q ∈ S3, i.e. quaternions q and −q
represent the same physical attitude.
Denoting by ω = (ω1 ω2 ω3)T the angular velocity vector of the body
coordinate frame, Eb relative to the inertial coordinate frame, Ef , expressed
in Eb, the kinematics equation is given by(

q̇0

q̇v

)
=

1

2

(
−qTv

I3q0 + [q×v ]

)
ω =

1

2
Ξ(q)ω (13)

The attitude error is used to quantify the mismatch between two attitudes.
If q defines the current attitude quaternion and qd is the desired quaternion, i.e.
the desired orientation, then the error quaternion that represents the attitude
error between the current orientation and the desired one is given by

qe = q−1
d ⊗ q = (qe0 q

T
ev )T (14)

where q−1 is the complementary rotation of the quaternion q which is given
by q−1 = (q0 − qTv )T and ⊗ denotes the quaternion multiplication [30].
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2.3 System model

The quadrotor is a small aerial vehicle that belongs to the VTOL (Vertical
Taking Off and Landing) class of aircrafts. It is lifted and propelled, forward
and laterally, by controlling the rotational speed of four blades mounted at the
four ends of a simple cross and driven by four DC Brushless motors (BLDC).
On such a platform (see Fig. 1), given that the front and rear motors rotate
counter-clockwise while the other two rotate clockwise, gyroscopic effects and
aerodynamic torques tend to cancel each other out in trimmed flight. The ro-
tation of the four rotors generates a vertical force, called the thrust T , equal
to the sum of the thrusts of each rotor (T = f1 + f2 + f3 + f4). The pitch
movement θ is obtained by increasing/decreasing the speed of the rear motor
while decreasing/increasing the speed of the front motor. The roll movement
φ is obtained similarly using the lateral motors. The yaw movement ψ is ob-
tained by increasing/decreasing the speed of the front and rear motors while
decreasing/increasing the speed of the lateral motors. In order to avoid any
linear movement of the quadrotor, these maneuvers should be achieved while
maintaining a value of the total thrust T that balances the aircraft weight. In
order to model the system’s dynamics, two frames are defined: a fixed frame
in the space Ef = [e f

1 , e
f

2 , e
f

3 ] and a body-fixed frame Eb = [e b
1 , e

b
2 , e

b
3 ],

attached to the quadrotor at its center of gravity, as shown in Fig. 1.

Fig. 1 Quadrotor: fixed frame Ef = [ef1 , e
f
2 , e

f
3 ] and body-fixed frame Eb = [eb1, e

b
2, e

b
3]

According to [31,?] and 2.2, the six degrees of freedom model (position
and attitude) of the system can be separated into translational and rotational
motions, represented respectively by ΣT and ΣR in equation (15) and (16).

ΣT :


ṗ = v

v̇ = ge3 −
1

mh
RT (q)Te3

(15)
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ΣR :

 q̇ =
1

2
Ξ(q)ω

Jω̇ = −[ω×]Jω + Γ
(16)

where mh denotes the mass of the quadrotor and J its inertial matrix expressed
in Eb. g is the gravity acceleration and e3 = (0 0 1)T . p = (x y z)T represents
the position of the quadrotor’s center of gravity, which coincides with the origin
of frame Eb, with respect to frame Ef , v = (vx vy vz)

T its linear velocity in Ef ,
and ω denotes the angular velocity of the quadrotor expressed in Eb. Γ ∈ R3

depend on the couples generated by the actuators, aerodynamic couples and
external couples (environmental forces). In this paper, it is assumed that these
torques are only generated by the actuators. −Te3 is the total thrust expressed
in Eb.
The reactive torque Qj due to the jth rotor drag, j ∈ {1, 2, 3, 4}, and the total
thrust T generated by the four rotors can be approximated by an algebraic
relationship on function of a PWM control signal applied to the BLDC-drivers:

Qj = kmumj T = bm

4∑
j=1

umj =

4∑
j=1

fj (17)

where the input signals umi are expressed in seconds, i.e. the time during
which the PWM control signal is in high state. km > 0 and bm > 0 are
two parameters that depend on the air density, the dynamic pressure, the
lift coefficient, the radius and the angle of attack of the blades and they are
obtained experimentally.
The components of the control torque vector Γ generated by the rotors are
given by:

Γ1 = dbm(um3 − um4)

Γ2 = dbm(um1 − um2)

Γ3 = km(−um1 + um2 − um3 + um4)

(18)

with d being the distance from one rotor to the center of mass of the quadrotor.
Combining equations (17) and (18), the forces and torques applied to the
quadrotor are written as:

(
Γ
T

)
=


0 0 dbm −dbm
dbm −dbm 0 0
−km −km km km
bm bm bm bm



um1

um2

um3

um4


= NUm

where Um = (um1 um2 um3 um4)T . Since N is an invertible matrix, the
vector of signals control Um is easily obtained.
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3 EVENT-BASED CONTROL STRATEGY

3.1 Problem statement

The objective is to design a control law that drives the quadrotor attitude to a
specified constant orientation and maintains this orientation starting from any
initial condition. It follows that the angular velocity vector must be approach
zero and remains null. In this paper, null stabilization is considered. Hence,
the inertial coordinate frame is selected to be the desired orientation and the
control objective is described by the following asymptotic condition:

q → (±1 0T )T , ω → 0 as t→∞ (19)

Equation (19) represents two equilibrium points (q0 = 1, qv = (0 0 0)T )
and (q0 = −1, qv = (0 0 0)T ). These equilibrium points represent the same
equilibrium point in the physical space and they yield the same attitude matrix
in equation (12). However, they represent two-point set in S3. This topological
obstruction not allows to state any global property for the closed-loop system,
using a continuous quaternion-based feedback [32,33].
In this study, the case qd = (1 0T )T is considered.
On the other hand, the quadrotor is equipped of an Attitude Heading Ref-
erence Systems (AHRS) and an embedded computer system (see Fig. 2).
The AHRS continuously monitors the state x (attitude and angular veloc-
ity). Based on current state information and the last computed control signal,
which is piecewise constant, the event-function decides when to broadcast the
current state measurement over the network which is denoted by xi. When-
ever the control block receives a new state value, it updates the control law
and the control signal for the actuators (PWM signals). Then, it broadcasts
the control signal over the network in order to evaluate the event-triggered
function and to detect a new event.
Thus, the problem consists in showing that the attitude of the quadrotor he-
licopter can be asymptotically stabilized by means of an event-triggered feed-
back as defined in section 2.1, i.e. with the control law (7) together with the
event function (8). Another motivation is that other traffic exists between two
successive events and after the update and broadcasting of the control signal
over the network. Reducing the traffic used for control (thanks to an event-
based approach) hence allows i) to reduce traffic congestion in the network
and ii) to broadcast other sensors data, for instance GPS or infrared sensors.

3.2 Control design

In order to stabilize the attitude of the quadrotor mini-helicopter, the subsys-
tem ΣR in (16) is used. Defining the variables x1 = q0 ∈ R, x2 = qv ∈ R3,
x3 = ω ∈ R3, ΣR can be rewritten as

ẋ = f(x) + g(x)u (20)
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Fig. 2 Quadrotor control system

which is a nonlinear system affine in the control with state x = (x1 x
T
2 xT3 )T

control u = Γ ∈ R3 and vectors fields

f(x) =


− 1

2x
T
2 x3

1
2 (x1I3 + [x×2 ])x3

−J−1[x×3 ]Jx3


g(x) =

(
g1(x) gT2 (x) gT3 (x)

)T
(21)

According to (19) the control objective becomes

x0 → 1, x2, x3 → 0 as t→∞ (22)

Lemma 1 The function V : S3 × R3 −→ R defined by

V = xT2 x2 + (x1 − 1)2 +
1

2
x̃TK−1

3 Jx̃ (23)

with x̃ = x3 + K1x2 is a CLF for the system (20) relative to the equilibrium

state xe =
(
1 0T 0T

)T
with the control

u = [x×3 ]Jx3 − JK1ẋ2 −K2x̃−K3x2 (24)

where K1, K2, K3 ∈ R3×3 are diagonal positive definite matrices and ẋ2 =
1
2 (x1I3 + [x×2 ])x3.

Proof Clearly V is smooth, positive definite and proper. Now, consider the
derivative of (23) along the trajectories of the closed-loop system with any

initial condition in S3 × R3 \
(
−1 0T 0T

)T
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V̇ (x) =
∂V

∂x

T

f(x) +
∂V

∂x

T

g(x)u

= xT2 x3 + x̃TK−1
3 JK1ẋ2 + x̃TK−1

3 J(J−1([x×3 ]Jx3)) + x̃TK−1
3 JJ−1u

= xT2 x3 + x̃TK−1
3

(
JK1ẋ2 + [x×3 ]Jx3 + u

)
= xT2 x3 − x̃TK−1

3 K2x̃− x̃Tx2

= xT2 x3 − x̃TK−1
3 K2x̃− (xT3 +K1x

T
2 )x2

= −x̃TK−1
3 K2x̃−K1x

T
2 x2 < 0 for x 6= xe

(25)

Then this mean that x2, x̃→ 0. That implies x3 → 0 and due to the quaternion
normality condition x0 → 1. Consequently V is a Control-Lyapunov Function.

Corollary 1 Consider the quadrotor mini-helicopter rotational dynamics and
the CLF given by (20) and (23), respectively. Then the event-triggered feedback
(k, e) defined by (7) and (8) with θ̄ = xT2 x2+(x1−1)2 and ∆(x) = I3 asymptot-

ically stabilizes the quadrotor at
(
1 0T 0T

)T
with a domain of attraction equal

to S3 × R3 \
(
−1 0T 0T

)T
. Furthermore, the feedback (k, e) is semi-uniformly

MSI and smooth on S3 × R3 \
(
1 0T 0T

)T
.

Proof The proof follows the one of Theorem 2.

Remark 2 Note that the stability analysis has been carried out considering the
asymptotic condition qd = (1 0T )T . In the case where the asymptotic condition
q → qd with qd 6= (1 0T )T is considered, the feedback becomes in function of
x1 = qe0 ∈ R, x2 = qev ∈ R3, x3 = ω ∈ R3, where the qe is given by (14) which
represents the attitude error between the current orientation and the desired
one.

4 EXPERIMENTAL SETUP

This section is devoted to proving the effectiveness of the proposed event-
triggered control. Experiments on the quadrotor prototype (Fig. 3) are carried
out in real-time.
This prototype is based on the mechanical structure of the 330X-S QUD-
Flyer developed by TSH-GAUI Hobby Corporation using four BLDC motors.
The control law is executed on a Spartan-6 FPGA LX9 MicroBoard. The
Spartan-6 has the ability to implement a “MicroBlaze” soft processor running
at 100 MHz. Furthermore, the Spartan-6 has the advantage to develop custom
modules such as PWM generators and USARTs ports. An AHRS is used to
obtain the attitude quaternion and angular velocity at 73 Hz. A Bluetooth
Modem linked to a PC is used to exchange the processed data. The desired
attitude qd is provided by means of a 5-channel Radio-Control Spektrum DX5e
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with 2.4 GHz radio technology. Four power modules are used to drive the
motors by means of a PWM signal. The frequency of the PWM signal is fixed
to 500 Hz. The power of the whole system is supplied by a 11.1 Volts Li-Po
battery. The specification and parameters of the quadrotor prototype are given
in the Table 1.

Parameter Description Value Units
m Mass 0.835 Kg
d Distance 0.16 m
Jx Inertia in x-axis 7.80 ×10−3 Kg· m2

Jy Inertia in y-axis 7.80 ×10−3 Kg· m2

Jz Inertia in z-axis 10.22 ×10−3 Kg· m2

bm Proportionality Constant 5106.8 N / s
km Proportionality Constant 342.4 N· m / s

Table 1 The specification and parameters of the Quadrotor

Fig. 3 The quadrotor mini-helicopter in flight

To evaluate the benefices of the control law defined in the corollary 1,
two experiments are performed. The objective is to bring the quadrotor from
any initial orientation, sufficiently far from the desired attitude defined by
qd = (1 0T )T i.e. φd = θ = 0 = ψ = 0 and hold it there by maintaining the
angular velocity to zero. The desired thrust is taken as T ≥ mg = 8.19 N such
that it guarantees a balance of the quadrotor’s weight. Experiments were per-
formed with the following gains: K1 = diag(1, 1, 1), K2 = diag(2.5, 2.5, 2.5),
K3 = diag(0.11, 0.11, 0.12). The value for the parameter σ in the event func-
tion (8) determinates the frequency of events and it is fixed to 0.94 for these
experiments.
In each cases, the first (top) plot shows the Euler angles (since they are more
intuitive, however the control law uses quaternions) whereas angular velocities
are provided in the second one. The third and fourth plots show the control
torques and the Lyapunov function (one can see it decreases while the sys-
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tem is stabilized). Finally, the last (bottom) plots give the event function –
an event occurs when this function vanishes to zero, as defined in (8) – and
a representation of the sampling instants (1 and 0 in the last plot mean the
control is updated or it is kept constant respectively).
In the first experiment, the control capabilities are tested to stabilize the sys-
tem, with initial conditions (−21o, 26.4o,−37o). The results are depicted in
Fig. 4 where the stabilization takes about 2.5 seconds. In the classical frame
(time-triggered control), the control law should be updated 365 times for a
span of 5 seconds, since the AHRS continuously provides the state at a fre-
quency of 73 Hz. With the proposed approach, one could note in Fig. 4(f) that
some large intervals without any control update exist. Actually, the control
law is updated only 72 times during the 5 seconds experimental time, which
represents a reduction of 80.2 % w.r.t. the classical frame. It is worth noting
that this reduction in the number of updates, reduces the data exchange be-
tween AHRS, controller and actuators without sacrificing performance. Also,
one could note in Fig. 4(e) that, whereas the event function only vanishes
in theory (it could not become negative by construction), the implemented
version becomes negative due to the AHRS sampling time. Indeed, an event
can only be detected when some data are received and these data are only
available every 0.0136 seconds.
In the second experiment, the robustness of the proposed controller towards
disturbance rejection is tested. The disturbances along each axis (the three di-
rections) are introduced in the system once achieved the attitude stabilization.
The results are depicted in Fig. 5, where a disturbance is performed on roll,
pitch and yaw at about 23, 33 and 46 seconds respectively. As one can see, the
disturbances produce an error on both the angles and the angular velocities,
see Fig. 5(a) and (b). As a consequence, the Lyapunov function in Fig. 5(d)
is highly increased when a perturbation occurs. The event-triggered function
vanishes or becomes negative in consequence and, as a result, the control law
is updated more often to overcome the perturbations, see Fig. 5(c). In this
experiment, the amount of samples needed for the event-triggered control for
55 seconds is 801 (instead of 4015 in the classical frame) which represents a
reduction of 80 %.

5 CONCLUSIONS

The main contribution of this paper is the development and implementation of
a nonlinear event-triggered feedback for the attitude stabilization of a quadro-
tor mini-helicopter. The attitude is parameterized using the unit quaternion.
Firstly, it is proved the existence of a smooth Control Lyapunov Function for
the attitude dynamics of the quadrotor. Then, an event-triggered static feed-
back is derived from the universal formula for event-triggered stabilization of
general nonlinear systems affine in the control [24]. The control law ensures
the asymptotic stability of the closed-loop system to the desired attitude. The
approach is validated in real-time and the experiments show that the event
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driven controller reduces by 80 % the communication load without deteriorat-
ing the closed-loop system performance. The proposed approach still has to
be compare with other control schemes. However, to our best knowledge, this
is the first time that a nonlinear event-triggered controller is applied for the
attitude stabilization of an unmanned aircraft system.
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Fig. 4 Stabilization to the origin of the quadrotor.
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Fig. 5 Robustness of the event-based control no-lineal to disturbances.


