Multiple zeta values, Padé approximation and Vasilyev's conjecture - Archive ouverte HAL
Article Dans Une Revue Annali della Scuola Normale Superiore di Pisa, Classe di Scienze Année : 2016

Multiple zeta values, Padé approximation and Vasilyev's conjecture

Stephane Fischler
  • Fonction : Auteur
  • PersonId : 835506
Tanguy Rivoal

Résumé

Sorokin gave in 1996 a new proof that pi is transcendental. It is based on a simultaneous Padé approximation problem involving certain multiple polylogarithms, which evaluated at the point 1 are multiple zeta values equal to powers of pi. In this paper we construct a Padé approximation problem of the same flavour, and prove that it has a unique solution up to proportionality. At the point 1, this provides a rational linear combination of 1 and multiple zeta values in an extended sense that turn out to be values of the Riemann zeta function at odd integers. As an application, we obtain a new proof of Vasilyev's conjecture for any odd weight, concerning the explicit evaluation of certain hypergeometric multiple integrals; it was first proved by Zudilin in 2003.
Fichier principal
Vignette du fichier
padezetaimp13.pdf (208.62 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00860302 , version 1 (10-09-2013)

Identifiants

Citer

Stephane Fischler, Tanguy Rivoal. Multiple zeta values, Padé approximation and Vasilyev's conjecture. Annali della Scuola Normale Superiore di Pisa, Classe di Scienze, 2016, 15, pp.1-24. ⟨10.2422/2036-2145.201309_009⟩. ⟨hal-00860302⟩
142 Consultations
185 Téléchargements

Altmetric

Partager

More