Restricted inverse zero-sum problems in groups of rank two
Résumé
Let $(G,+)$ be a finite abelian group. Then, $\so(G)$ and $\eta(G)$ denote the smallest integer $\ell$ such that each sequence over $G$ of length at least $\ell$ has a subsequence whose terms sum to $0$ and whose length is equal to and at most, resp., the exponent of the group. For groups of rank two, we study the inverse problems associated to these constants, i.e., we investigate the structure of sequences of length $\so(G)-1$ and $\eta(G)-1$ that do not have such a subsequence. On the one hand, we show that the structure of these sequences is in general richer than expected. On the other hand, assuming a well-supported conjecture on this problem for groups of the form $C_m \oplus C_m$, we give a complete characterization of all these sequences for general finite abelian groups of rank two. In combination with partial results towards this conjecture, we get unconditional characterizations in special cases.