Vector partition functions and index of transversally elliptic operators - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2008

Vector partition functions and index of transversally elliptic operators

Résumé

Let G be a torus acting linearly on a complex vector space M, and let X be the list of weights of G in M. We determine the equivariant K-theory of the open subset of M consisting of points with finite stabilizers. We identify it to the space DM(X) of functions on the lattice of weights of G, satisfying the cocircuit difference equations associated to X, introduced by Dahmen--Micchelli in the context of the theory of splines in order to study vector partition functions. This allows us to determine the range of the index map from G-transversally elliptic operators on M to generalized functions on G and to prove that the index map is an isomorphism on the image. This is a setting studied by Atiyah-Singer which is in a sense universal for index computations.

Dates et versions

hal-00855595 , version 1 (29-08-2013)

Identifiants

Citer

Corrado de Concini, Claudio C. Procesi, Michele Vergne. Vector partition functions and index of transversally elliptic operators. 2008. ⟨hal-00855595⟩
156 Consultations
0 Téléchargements

Altmetric

Partager

More