Development of a microsystem based on a microfluidic network to tune and reconfigure RF circuits
Résumé
This special issue presents devices and the results of a tunable microwave microsystem associating RF circuits and microfluidic components. A channel is buried inside the substrate of a microstrip waveguide. This channel is located beneath a resonant stub. With this configuration a microfluidic passive tunable filter can be fabricated. Dielectric fluids are used to disrupt the electric field in a microstrip structure and thus modify the effective permittivity of the substrate. In this work, a notch filter is realized with an open-ended quarter-wavelength stub placed on top of a hollow SU-8 structure. This structure offers two advantages: channels can easily be fabricated and a reduction of SU8 losses. The filter shows a good performance; the initial cut-off frequency of 25 GHz shifts more than 20% when deionized water is used in fluidic channels. And the shape of RF function is kept throughout the range.