Stable solutions of the Allen-Cahn equation in dimension 8 and minimal cones. - Archive ouverte HAL
Article Dans Une Revue Journal of Functional Analysis Année : 2013

Stable solutions of the Allen-Cahn equation in dimension 8 and minimal cones.

Résumé

For all n \geq 1, we are interested in bounded solutions of the Allen-Cahn equation \Delta u+ u− u^3 = 0 which are defined in all R^{n+1} and whose zero set is asymptotic to a given minimal cone. In particular, in dimension n + 1 \geq 8, we prove the existence of stable solutions of the Allen-Cahn equation whose zero sets are not hyperplanes.

Dates et versions

hal-00851587 , version 1 (15-08-2013)

Identifiants

Citer

Frank Pacard, Juncheng Wei. Stable solutions of the Allen-Cahn equation in dimension 8 and minimal cones.. Journal of Functional Analysis, 2013, 264 (5), pp.1131-1167. ⟨10.1016/j.jfa.2012.03.010⟩. ⟨hal-00851587⟩
79 Consultations
0 Téléchargements

Altmetric

Partager

More