Finite-energy sign-changing solutions with dihedral symmetry for the stationary nonlinear Schrödinger equation. - Archive ouverte HAL
Article Dans Une Revue Journal of the European Mathematical Society Année : 2012

Finite-energy sign-changing solutions with dihedral symmetry for the stationary nonlinear Schrödinger equation.

Résumé

We address the problem of the existence of finite energy solitary waves for nonlinear Klein-Gordon or Schrödinger type equations Δu−u+f(u)=0 in RN, u∈H1(RN), where N≥2. Under natural conditions on the nonlinearity f, we prove the existence of infinitely many nonradial solutions in any dimension N≥2. Our result complements earlier works of Bartsch and Willem (N=4 or N≥6) and Lorca-Ubilla (N=5) where solutions invariant under the action of O(2)×O(N−2) are constructed. In contrast, the solutions we construct are invariant under the action of Dk×O(N−2) where Dk⊂O(2) denotes the dihedral group of rotations and reflexions leaving a regular planar polygon with k sides invariant, for some integer k≥7, but they are not invariant under the action of O(2)×O(N−2).

Dates et versions

hal-00851584 , version 1 (15-08-2013)

Identifiants

Citer

Frank Pacard, Monica Musso, Juncheng Wei. Finite-energy sign-changing solutions with dihedral symmetry for the stationary nonlinear Schrödinger equation.. Journal of the European Mathematical Society, 2012, 14 (6), pp.1923-1953. ⟨10.4171/JEMS/351⟩. ⟨hal-00851584⟩
79 Consultations
0 Téléchargements

Altmetric

Partager

More