Large restricted sumsets in general abelian group - Archive ouverte HAL
Article Dans Une Revue European Journal of Combinatorics Année : 2013

Large restricted sumsets in general abelian group

Résumé

Let A, B and S be three subsets of a finite Abelian group G. The restricted sumset of A and B with respect to S is defined as A\wedge^{S} B= {a+b: a in A, b in B and a-b not in S}. Let L_S=max_{z in G}| {(x,y): x,y in G, x+y=z and x-y in S}|. A simple application of the pigeonhole principle shows that |A|+|B|>|G|+L_S implies A\wedge^S B=G. We then prove that if |A|+|B|=|G|+L_S then |A\wedge^S B|>= |G|-2|S|. We also characterize the triples of sets (A,B,S) such that |A|+|B|=|G|+L_S and |A\wedge^S B|= |G|-2|S|. Moreover, in this case, we also provide the structure of the set G\setminus (A\wedge^S B).

Dates et versions

hal-00851523 , version 1 (14-08-2013)

Identifiants

Citer

Yahya Ould Hamidoune, Susana C. Lopez, Alain Plagne. Large restricted sumsets in general abelian group. European Journal of Combinatorics, 2013, 34 (8), pp.1348-1364. ⟨10.1016/j.ejc.2013.05.020⟩. ⟨hal-00851523⟩
132 Consultations
0 Téléchargements

Altmetric

Partager

More