Invariances of random fields paths, with applications in Gaussian Process Regression - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2013

Invariances of random fields paths, with applications in Gaussian Process Regression

Résumé

We study pathwise invariances of centred random fields that can be controlled through the covariance. A result involving composition operators is obtained in second-order settings, and we show that various path properties including additivity boil down to invariances of the covariance kernel. These results are extended to a broader class of operators in the Gaussian case, via the Loève isometry. Several covariance-driven pathwise invariances are illustrated, including fields with symmetric paths, centred paths, harmonic paths, or sparse paths. The proposed approach delivers a number of promising results and perspectives in Gaussian process regression.
Fichier principal
Vignette du fichier
Invariant_fields_GPR.pdf (479.38 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00850436 , version 1 (06-08-2013)

Identifiants

Citer

David Ginsbourger, Olivier Roustant, Nicolas Durrande. Invariances of random fields paths, with applications in Gaussian Process Regression. 2013. ⟨hal-00850436⟩
678 Consultations
453 Téléchargements

Altmetric

Partager

More