A Comparison of Centrality Measures for Graph-Based Keyphrase Extraction
Résumé
In this paper, we present and compare various centrality measures for graph-based keyphrase extraction. Through experiments carried out on three standard datasets of different languages and domains, we show that simple degree centrality achieve results comparable to the widely used TextRank algorithm, and that closeness centrality obtains the best results on short documents.
Domaines
Traitement du texte et du documentOrigine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...