Real time drunkenness analysis in a realistic car simulation
Résumé
This paper describes a blood alcohol content estimation method for car driver, based on a comportment analysis performed within a realistic simulation. An artificial neural network learns how to estimate subject's blood alcohol content. Low-level recording of user actions on the steering wheel and pedals are used to feed a multilayer perceptron, and a breathalyzer is used to build the learning examples set (desired output). Results are compared with a successful previous work based on a simple video game and demonstrate the ''complexity scalability'' of the approach.