Model selection for the ℓ2-SVM by following the regularization - Archive ouverte HAL
Article Dans Une Revue Transactions on Computational Collective Intelligence Année : 2013

Model selection for the ℓ2-SVM by following the regularization

Rémi Bonidal
Samy Tindel
  • Fonction : Auteur
  • PersonId : 832698
Yann Guermeur
  • Fonction : Auteur
  • PersonId : 830806

Résumé

For a support vector machine, model selection consists in selecting the kernel function, the values of its parameters, and the amount of regularization. To set the value of the regularization parameter, one can minimize an appropriate objective function over the regularization path. A priori, this requires the availability of two elements: the objective function and an algorithm computing the regularization path at a reduced cost. The literature provides us with several upper bounds and estimates for the leave-one-out cross-validation error of the ℓ2-SVM. However, no algorithm was available so far for fitting the entire regularization path of this machine. In this article, we introduce the first algorithm of this kind. It is involved in the specification of new methods to tune the corresponding penalization coefficient, whose objective function is a leave-one-out error bound or estimate. From a computational point of view, these methods appear especially appropriate when the Gram matrix is of low rank. A comparative study involving state-of-the-art alternatives provides us with an empirical confirmation of this advantage.
Fichier principal
Vignette du fichier
bonidal11a.pdf (494.53 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00849720 , version 1 (31-07-2013)

Identifiants

Citer

Rémi Bonidal, Samy Tindel, Yann Guermeur. Model selection for the ℓ2-SVM by following the regularization. Transactions on Computational Collective Intelligence, 2013, 13, pp.83-112. ⟨10.1007/978-3-642-54455-2_4⟩. ⟨hal-00849720⟩
501 Consultations
312 Téléchargements

Altmetric

Partager

More