Weak and strong singular solutions of semilinear fractional elliptic equations - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2013

Weak and strong singular solutions of semilinear fractional elliptic equations

Huyuan Chen
  • Fonction : Auteur
  • PersonId : 934383

Résumé

Let $p\in(0,\frac{N}{N-2\alpha})$, $\alpha\in(0,1)$ and $\Omega\subset \R^N$ be a bounded $C^2$ domain containing $0$. If $\delta_0$ is the Dirac measure at $0$ and $k>0$, we prove that the weakly singular solution $u_k$ of $(E_k)$ $ (-\Delta)^\alpha u+u^p=k\delta_0 $ in $\Omega$ which vanishes in $\Omega^c$, is a classical solution of $(E_*)$ $ (-\Delta)^\alpha u+u^p=0 $ in $\Omega\setminus\{0\}$ with the same outer data. When $\frac{2\alpha}{N-2\alpha}\leq 1+\frac{2\alpha}{N}$, $p\in(0, 1+\frac{2\alpha}{N}]$ we show that the $u_k$ converges to $\infty$ in whole $\Omega$ when $k\to\infty$, while, for $p\in(1+\frac{2\alpha}N,\frac{N}{N-2\alpha})$, the limit of the $u_k$ is a strongly singular solution of $(E_*)$. The same result holds in the case $1+\frac{2\alpha}{N}<\frac{2\alpha}{N-2\alpha}$ excepted if $\frac{2\alpha}{N}
Fichier principal
Vignette du fichier
9_weakly_and_strongly_singular_solutions.pdf (167.03 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00848582 , version 1 (26-07-2013)
hal-00848582 , version 2 (17-11-2013)
hal-00848582 , version 3 (26-11-2013)

Identifiants

Citer

Huyuan Chen, Laurent Veron. Weak and strong singular solutions of semilinear fractional elliptic equations. 2013. ⟨hal-00848582v2⟩
196 Consultations
341 Téléchargements

Altmetric

Partager

More