The Kauffman skein algebra of a surface at $\sqrt{-1}$ - Archive ouverte HAL
Article Dans Une Revue Mathematische Annalen Année : 2011

The Kauffman skein algebra of a surface at $\sqrt{-1}$

Résumé

We study the structure of the Kauffman algebra of a surface with parameter equal to √-1 . We obtain an interpretation of this algebra as an algebra of parallel transport operators acting on sections of a line bundle over the moduli space of flat SU(2)-connections over the surface. We analyse the asymptotics of traces of curve-operators in TQFT in non standard regimes where the root of unity parametrizing the TQFT accumulates to a root of unity. We interpret the case of √-1 in terms of parallel transport operators.
Fichier non déposé

Dates et versions

hal-00843248 , version 1 (10-07-2013)

Identifiants

  • HAL Id : hal-00843248 , version 1

Citer

Julien Marché. The Kauffman skein algebra of a surface at $\sqrt{-1}$. Mathematische Annalen, 2011, 351, pp.347-364. ⟨hal-00843248⟩
86 Consultations
0 Téléchargements

Partager

More