Pré-Publication, Document De Travail Année : 2013

Homogenization of random parabolic operators. Diffusion approximation.

Résumé

The paper deals with homogenization of divergence form second order parabolic operators whose coefficients are periodic in spatial variables and random stationary in time. Under proper mixing assumptions, we study the limit behaviour of the normalized difference between solutions of the original and the homogenized problems. The asymptotic behaviour of this difference depends crucially on the ratio between spatial and temporal scaling factors. Here we study the case of self-similar parabolic diffusion scaling.
Fichier principal
Vignette du fichier
KPP_oct2014.pdf (207.91 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00842809 , version 1 (09-07-2013)
hal-00842809 , version 2 (11-07-2014)
hal-00842809 , version 3 (20-10-2014)

Identifiants

Citer

Marina Kleptsyna, Andrey Piatnitski, Alexandre Popier. Homogenization of random parabolic operators. Diffusion approximation.. 2013. ⟨hal-00842809v3⟩
255 Consultations
227 Téléchargements

Altmetric

Partager

More