Fatou directions along the Julia set for endomorphisms of CP^k - Archive ouverte HAL
Article Dans Une Revue Journal de Mathématiques Pures et Appliquées Année : 2012

Fatou directions along the Julia set for endomorphisms of CP^k

Romain Dujardin

Résumé

Not much is known about the dynamics outside the support of the maximal entropy measure $\mu$ for holomorphic endomorphisms of $\mathbb{CP}^k$. In this article we study the structure of the dynamics on the Julia set, which is typically larger than $Supp(\mu)$. The Julia set is the support of the so-called Green current $T$, so it admits a natural filtration by the supports of the exterior powers of $T$. For $1\leq q \leq k$, let $J_q= Supp(T^q)$. We show that for a generic point of $J_q\setminus J_{q+1}$ there are at least $(k-q)$ "Fatou directions" in the tangent space. We also give estimates for the rate of expansion in directions transverse to the Fatou directions.

Dates et versions

hal-00836306 , version 1 (20-06-2013)

Identifiants

Citer

Romain Dujardin. Fatou directions along the Julia set for endomorphisms of CP^k. Journal de Mathématiques Pures et Appliquées, 2012, 98 (6), pp.591-615. ⟨10.1016/j.matpur.2012.05.004⟩. ⟨hal-00836306⟩
95 Consultations
0 Téléchargements

Altmetric

Partager

More