Improved Unsteady RANS models applied to a jet transverse to a pipe flow
Résumé
An unsteady RANS model is developed in order to simulate the complex situations involving both free and bounded flows. This model tuned to catch coherent flow structures is developed both in the k-ε and k-l approaches. The full 3D geometry of a round jet exiting from a reservoir into a pipe has been computed. Periodic conditions are applied in order to compare with an experiments consisting of eight jets exiting in a cross pipe flow. Improvement has been obtained with this URANS turbulence model compared to RANS and good agreement compared with experiment has been obtained. Unsteady phenomena are reproduced by the model and provide more insight into the physical properties of the flow and of the transport of a passive scalar.