Khasminskii--Whitham averaging for randomly perturbed KdV equation - Archive ouverte HAL
Article Dans Une Revue Journal de Mathématiques Pures et Appliquées Année : 2008

Khasminskii--Whitham averaging for randomly perturbed KdV equation

Résumé

We consider the damped-driven KdV equation $$ \dot u-\nu{u_{xx}}+u_{xxx}-6uu_x=\sqrt\nu \eta(t,x), x\in S^1, \int u dx\equiv \int\eta dx\equiv0, $$ where $0<\nu\le1$ and the random process $\eta$ is smooth in $x$ and white in $t$. For any periodic function $u(x)$ let $ I=(I_1,I_2,...) $ be the vector, formed by the KdV integrals of motion, calculated for the potential $u(x)$. We prove that if $u(t,x)$ is a solution of the equation above, then for $0\le t\lesssim\nu^{-1}$ and $\nu\to0$ the vector $ I(t)=(I_1(u(t,\cdot)),I_2(u(t,\cdot)),...) $ satisfies the (Whitham) averaged equation.

Dates et versions

hal-00832698 , version 1 (11-06-2013)

Identifiants

Citer

Andrey L. Piatnitski, Sergei Kuksin. Khasminskii--Whitham averaging for randomly perturbed KdV equation. Journal de Mathématiques Pures et Appliquées, 2008, 89 (4), pp.400-428. ⟨10.1016/j.matpur.2007.12.003⟩. ⟨hal-00832698⟩
115 Consultations
0 Téléchargements

Altmetric

Partager

More