Actions infinitésimales dans la correspondance de Langlands locale p-adique - Archive ouverte HAL
Article Dans Une Revue Mathematische Annalen Année : 2012

Actions infinitésimales dans la correspondance de Langlands locale p-adique

Résumé

Let V be a two-dimensional absolutely irreducible p-adic Galois representation and let Pi be the p-adic Banach space representation associated to V via Colmez's p-adic Langlands correspondence. We establish a link between the infinitesimal action of GL_2(Q_p) on the locally analytic vectors of Pi, the differential equation associated to V via the theory of Fontaine and Berger, and the Sen polynomial of V. This answers a question of Harris and gives a new proof of a theorem of Colmez: Pi has nonzero locally algebraic vectors if and only if V is potentially semi-stable with distinct Hodge-Tate weights.

Dates et versions

hal-00831531 , version 1 (07-06-2013)

Identifiants

Citer

Gabriel Dospinescu. Actions infinitésimales dans la correspondance de Langlands locale p-adique. Mathematische Annalen, 2012, 354 (2), pp.627-657. ⟨10.1007/s00208-011-0736-2⟩. ⟨hal-00831531⟩
92 Consultations
0 Téléchargements

Altmetric

Partager

More