A convergent scheme for Hamilton-Jacobi equations on a junction: application to traffic - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2013

A convergent scheme for Hamilton-Jacobi equations on a junction: application to traffic

Résumé

In this paper, we consider first order Hamilton-Jacobi (HJ) equations posed on a "junction", that is to say the union of a finite number of half-lines with a unique common point. For this continuous HJ problem, we propose a finite difference scheme and prove two main results. As a first result, we show bounds on the discrete gradient and time derivative of the numerical solution. Our second result is the convergence (for a subsequence) of the numerical solution towards a viscosity solution of the continuous HJ problem, as the mesh size goes to zero. When the solution of the continuous HJ problem is unique, we recover the full convergence of the numerical solution. We apply this scheme to compute the densities of cars for a traffic model. We recover the well-known Godunov scheme outside the junction point and we give a numerical illustration.
Fichier principal
Vignette du fichier
costeseque-lebacque-monneau.pdf (1.45 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00829044 , version 1 (01-06-2013)
hal-00829044 , version 2 (16-03-2014)

Identifiants

  • HAL Id : hal-00829044 , version 1

Citer

Guillaume Costeseque, Jean-Patrick Lebacque, Régis Monneau. A convergent scheme for Hamilton-Jacobi equations on a junction: application to traffic. 2013. ⟨hal-00829044v1⟩

Collections

ENPC CERMICS
237 Consultations
212 Téléchargements

Partager

More