Monitoring User-System Interactions through Graph-Based Intrinsic Dynamics Analysis - Archive ouverte HAL
Communication Dans Un Congrès Année : 2013

Monitoring User-System Interactions through Graph-Based Intrinsic Dynamics Analysis

Sébastien Heymann
  • Fonction : Auteur
  • PersonId : 925451
  • IdRef : 181491931

Résumé

Monitoring the evolution of user-system interactions is of high importance for complex systems and for information systems in particular, especially to raise alerts automatically when abnormal behaviors occur. However current methods fail at capturing the intrinsic dynamics of the system, and focus on evolution due to exogenous factors like day-night patterns. In order to capture the intrinsic dynamics of user-system interactions, we propose an innovative graph-based approach relying on a novel concept of time. We apply our method on two large real-world systems (the Github.com social network and the eDonkey peer-to-peer system) to automatically detect statistically significant events in a real-time fashion. We finally validate our results with the successful interpretation of the detected events.
Fichier principal
Vignette du fichier
heymann_article2.pdf (1.87 Mo) Télécharger le fichier
main.pdf (1.37 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Format Autre

Dates et versions

hal-00828778 , version 1 (06-09-2013)

Identifiants

Citer

Sébastien Heymann, Bénédicte Le Grand. Monitoring User-System Interactions through Graph-Based Intrinsic Dynamics Analysis. 7th IEEE International Conference on Research Challenges in Information Science, May 2013, Paris, France. pp.1-10, ⟨10.1109/RCIS.2013.6577695⟩. ⟨hal-00828778⟩
154 Consultations
359 Téléchargements

Altmetric

Partager

More