A proximal approach for constrained cosparse modelling - Archive ouverte HAL
Communication Dans Un Congrès Année : 2012

A proximal approach for constrained cosparse modelling

Résumé

The concept of cosparsity has been recently introduced in the arena of compressed sensing. In cosparse modelling, the ℓ0 (or ℓ1) cost of an analysis-based representation of the target signal is minimized under a data fidelity constraint. By taking benefit from recent advances in proximal algorithms, we show that it is possible to efficiently address a more general framework where a convex block sparsity measure is minimized under various convex constraints. The main contribution of this work is the introduction of a new epigraphical projection technique, which allows us to consider more flexible data fidelity constraints than the standard linear or quadratic ones. The validity of our approach is illustrated through an application to an image reconstruction problem in the presence of Poisson noise.
Fichier principal
Vignette du fichier
icassp2012.pdf (115.9 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-00826002 , version 1 (28-05-2013)

Identifiants

Citer

Giovanni Chierchia, Nelly Pustelnik, Jean-Christophe Pesquet, Béatrice Pesquet-Popescu. A proximal approach for constrained cosparse modelling. Acoustics, Speech and Signal Processing (ICASSP), 2012 IEEE International Conference on, Mar 2012, Kyoto, Japan. pp.3433 - 3436, ⟨10.1109/ICASSP.2012.6288654⟩. ⟨hal-00826002⟩
622 Consultations
368 Téléchargements

Altmetric

Partager

More