Bayesian non parametric inference of discrete valued networks
Résumé
We present a non parametric bayesian inference strategy to automatically infer the number of classes during the clustering process of a discrete valued random network. Our methodology is related to the Dirichlet process mixture models and inference is performed using a Blocked Gibbs sampling procedure. Using simulated data, we show that our approach improves over competitive variational inference clustering methods.
Fichier principal
papier_ESANN2.pdf (106.56 Ko)
Télécharger le fichier
slides.pdf (330.35 Ko)
Télécharger le fichier
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Format | Autre |
---|
Loading...