Bayesian non parametric inference of discrete valued networks - Archive ouverte HAL
Communication Dans Un Congrès Année : 2013

Bayesian non parametric inference of discrete valued networks

Résumé

We present a non parametric bayesian inference strategy to automatically infer the number of classes during the clustering process of a discrete valued random network. Our methodology is related to the Dirichlet process mixture models and inference is performed using a Blocked Gibbs sampling procedure. Using simulated data, we show that our approach improves over competitive variational inference clustering methods.
Fichier principal
Vignette du fichier
papier_ESANN2.pdf (106.56 Ko) Télécharger le fichier
slides.pdf (330.35 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Format Autre
Loading...

Dates et versions

hal-00825966 , version 1 (25-05-2013)

Identifiants

  • HAL Id : hal-00825966 , version 1

Citer

Laetitia Nouedoui, Pierre Latouche. Bayesian non parametric inference of discrete valued networks. 21-th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN 2013), 2013, Bruges, Belgium. pp.291-296. ⟨hal-00825966⟩
165 Consultations
134 Téléchargements

Partager

More