Seismic multiple removal with a Primal-Dual proximal algorithm
Résumé
Both random and structured perturbations affect seismic data. Their removal, to unveil meaningful geophysical information, requires additional priors. Seismic multiples are one form of structured perturbations related to wave-field bouncing. In this paper, we model these undesired signals through a time-varying filtering process accounting for inaccuracies in amplitude, time-shift and average frequency of available templates. We recast the problem of jointly estimating the filters and the signal of interest (primary) in a new convex variational formulation, allowing the incorporation of knowledge about the noise statistics. By making some physically plausible assumptions about the slow time variations of the filters, and by adopting a potential promoting the sparsity of the primary in a wavelet frame, we design a primal-dual algorithm which yields good performance in the provided simulation examples.