Quasilinear and Hessian type equations with exponential reaction and measure data - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2014

Quasilinear and Hessian type equations with exponential reaction and measure data

Résumé

We prove existence results concerning equations of the type $-\Gd_pu=P(u)+\gm$ for $p>1$ and $F_k[-u]=P(u)+\gm$ with $1\leq k<\frac{N}{2}$ in a bounded domain $\Omega$ or the whole $\mathbb{R}^N$, where $\gm$ is a positive Radon measure and $P(u)\sim e^{au^\beta}$ with $a>0$ and $\beta\geq 1$. Sufficient conditions for existence are expressed in terms of the fractional maximal potential of $\gm$. Two-sided estimates on the solutions are obtained in terms of some precise Wolff potentials of $\gm$. Necessary conditions are obtained in terms of Orlicz capacities. We also establish existence results for a general Wolff potential equation under the form $u={\bf W}_{\alpha,p}^R[P(u)]+f$ in $\mathbb{R}^N$, where $0
Fichier principal
Vignette du fichier
QuasilinearHessianWolffintegral-11.pdf (267.38 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00823874 , version 1 (18-05-2013)
hal-00823874 , version 2 (26-05-2013)
hal-00823874 , version 3 (08-06-2013)
hal-00823874 , version 4 (12-06-2013)
hal-00823874 , version 5 (09-04-2014)
hal-00823874 , version 6 (09-05-2014)

Identifiants

Citer

Hung Nguyen Quoc, Laurent Veron. Quasilinear and Hessian type equations with exponential reaction and measure data. 2014. ⟨hal-00823874v5⟩
249 Consultations
194 Téléchargements

Altmetric

Partager

More