Coherent internal state transfer by three-photon STIRAP-like scheme for many-atom samples
Résumé
A STIRAP-like scheme is proposed to exploit a three-photon resonance taking place in alkaline-earth-metal ions. This scheme is designed for state transfer between the two fine structure components of the metastable D-state which are two excited states that can serve as optical or THz qu-bit. The advantage of a coherent three-photon process compared to two-photon STIRAP lies in the possibility of exact cancellation of the first order Doppler shift which opens the way for an application to a sample composed of many ions. The transfer efficiency and its dependence with experimental parameters are analyzed by numerical simulations. This efficiency is shown to reach a fidelity as high as $(1-8.10^{-5})$ with realistic parameters. The scheme is also extended to the synthesis of a linear combination of three stable or metastable states.
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...