Computing representations for radicals of finitely generated differential ideals - Archive ouverte HAL
Article Dans Une Revue Applicable Algebra in Engineering, Communication and Computing Année : 2009

Computing representations for radicals of finitely generated differential ideals

Résumé

This paper deals with systems of polynomial di erential equations, ordinary or with partial derivatives. The embedding theory is the di erential algebra of Ritt and Kolchin. We describe an algorithm, named Rosenfeld-Gröbner, which computes a representation for the radical p of the diff erential ideal generated by any such sys- tem . The computed representation constitutes a normal simpli er for the equivalence relation modulo p (it permits to test embership in p). It permits also to compute Taylor expansions of solutions of . The algorithm is implemented within a package in MAPLE.
Fichier principal
Vignette du fichier
blopV2.pdf (412.81 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00820902 , version 1 (06-05-2013)

Identifiants

Citer

François Boulier, Daniel Lazard, François Ollivier, Michel Petitot. Computing representations for radicals of finitely generated differential ideals. Applicable Algebra in Engineering, Communication and Computing, 2009, 20 (1), pp.73-121. ⟨10.1007/s00200-009-0091-7⟩. ⟨hal-00820902⟩
610 Consultations
412 Téléchargements

Altmetric

Partager

More