Graph-based inter-subject classification of local fMRI patterns
Résumé
Classification of medical images in multi-subjects settings is a difficult challenge due to the variability that exists between individuals. Here we introduce a new graph-based framework designed to deal with inter-subject functional variability present in fMRI data. A graphical model is constructed to encode the functional, geometric and structural properties of local activation patterns. We then design a specific graph kernel, allowing to conduct SVM classification in graph space. Experiments conducted in an inter-subject classification task of patterns recorded in the auditory cortex show that it is the only approach to perform above chance level, among a wide range of tested methods.
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...