Graph-based inter-subject classification of local fMRI patterns - Archive ouverte HAL
Communication Dans Un Congrès Année : 2012

Graph-based inter-subject classification of local fMRI patterns

Résumé

Classification of medical images in multi-subjects settings is a difficult challenge due to the variability that exists between individuals. Here we introduce a new graph-based framework designed to deal with inter-subject functional variability present in fMRI data. A graphical model is constructed to encode the functional, geometric and structural properties of local activation patterns. We then design a specific graph kernel, allowing to conduct SVM classification in graph space. Experiments conducted in an inter-subject classification task of patterns recorded in the auditory cortex show that it is the only approach to perform above chance level, among a wide range of tested methods.
Fichier principal
Vignette du fichier
mlmi2012_takerkart_camera_ready.pdf (176.05 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00818815 , version 1 (29-04-2013)

Identifiants

Citer

Sylvain Takerkart, Guillaume Auzias, Bertrand Thirion, Daniele Schön, Liva Ralaivola. Graph-based inter-subject classification of local fMRI patterns. Third International Workshop Machine Learning in Medical Imaging - MLMI 2012 (Held in Conjunction with MICCAI 2012), Oct 2012, Nice, France. pp 184-192, ⟨10.1007/978-3-642-35428-1_23⟩. ⟨hal-00818815⟩
758 Consultations
592 Téléchargements

Altmetric

Partager

More