Hölder continuity of the value function for control-affine systems
Résumé
We prove the continuity and we give a Holder estimate for the value function associated with the $L^1$ cost of the control-affine system $\dot q = \drift(q)+\sum_{j=1}^m u_j f_j(q)$, satisfying the strong Hörmander condition. This is done by proving a result in the same spirit as the Ball-Box theorem for driftless (or sub-Riemannian) systems. The techniques used are based on a reduction of the control-affine system to a linear but time-dependent one, for which we are able to define a generalization of the nilpotent approximation. Finally, we also prove the continuity of the value function associated with the $L^1$ cost of time-dependent systems of the form $\dot q = \sum_{j=1}^m u_j f_j^t(q)$.
Origine | Fichiers produits par l'(les) auteur(s) |
---|