Hölder continuity of the value function for control-affine systems - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2013

Hölder continuity of the value function for control-affine systems

Résumé

We prove the continuity and we give a Holder estimate for the value function associated with the $L^1$ cost of the control-affine system $\dot q = \drift(q)+\sum_{j=1}^m u_j f_j(q)$, satisfying the strong Hörmander condition. This is done by proving a result in the same spirit as the Ball-Box theorem for driftless (or sub-Riemannian) systems. The techniques used are based on a reduction of the control-affine system to a linear but time-dependent one, for which we are able to define a generalization of the nilpotent approximation. Finally, we also prove the continuity of the value function associated with the $L^1$ cost of time-dependent systems of the form $\dot q = \sum_{j=1}^m u_j f_j^t(q)$.
Fichier principal
Vignette du fichier
holder_hal.pdf (380.39 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00817300 , version 1 (24-04-2013)
hal-00817300 , version 2 (26-11-2013)

Identifiants

Citer

Dario Prandi. Hölder continuity of the value function for control-affine systems. 2013. ⟨hal-00817300v1⟩
321 Consultations
307 Téléchargements

Altmetric

Partager

More