Weyl group actions on the Springer sheaf - Archive ouverte HAL Access content directly
Journal Articles Proceedings of the London Mathematical Society Year : 2014

Weyl group actions on the Springer sheaf

Abstract

We show that two Weyl group actions on the Springer sheaf with arbitrary coefficients, one defined by Fourier transform and one by restriction, agree up to a twist by the sign character. This generalizes a familiar result from the setting of l-adic cohomology, making it applicable to modular representation theory. We use the Weyl group actions to define a Springer correspondence in this generality, and identify the zero weight spaces of small representations in terms of this Springer correspondence.
Fichier principal
Vignette du fichier
fourier.pdf (319.04 Ko) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

hal-00813156 , version 1 (15-04-2013)

Identifiers

  • HAL Id : hal-00813156 , version 1

Cite

Pramod N. Achar, Anthony Henderson, Daniel Juteau, Simon Riche. Weyl group actions on the Springer sheaf. Proceedings of the London Mathematical Society, 2014, 108, pp.1501-1528. ⟨hal-00813156⟩
172 View
169 Download

Share

Gmail Facebook X LinkedIn More