Impact of UV-visible light on the morphological and photochemical behavior of a low-bandgap poly(2,7-carbazole) derivative for use in high-performance solar cells - Archive ouverte HAL
Article Dans Une Revue Advanced Energy Materials Année : 2013

Impact of UV-visible light on the morphological and photochemical behavior of a low-bandgap poly(2,7-carbazole) derivative for use in high-performance solar cells

Aurélien Tournebize
  • Fonction : Auteur
Pierre-Olivier Bussiere
  • Fonction : Auteur
  • PersonId : 875170
Pascal Wong-Wah-Chung
Sandrine Thérias
Agnès Rivaton
  • Fonction : Auteur
  • PersonId : 831431
Jean-Luc Gardette
  • Fonction : Auteur
Serge Beaupré
  • Fonction : Auteur
Mario Leclerc
  • Fonction : Auteur

Résumé

This paper reports on the photochemical behavior upon exposure to UV-visible light of a poly(2,7-carbazole) derivative for use in high-performance solar cells. Poly[N-9′-hepta-decanyl-2,7-carbazole-alt-5,5-(4′,7′-di-2-thienyl-2′,1′,3′-benzothiadiazole)] (PCDTBT) is one of a relatively large class of push-pull carbazole-based copolymers that have been synthesized to better harvest the solar spectrum. The 2,7-carbazole building block of PCDTBT is also used with different electron-accepting units in a large variety of low-band-gap polymers. The photochemical and morphological behavior of PCDTBT thin films is investigated from the molecular scale to the nanomechanical properties. The photo-oxidation mechanism is shown to be governed by chain-scission and cross-linking reactions. It results in dramatic evolution of the morphology, roughness and stiffness of thin PCDTBT films. Based on the identification of several photoproducts formed along the macromolecular chains or released into the gas phase, the main pathways of PCDTBT photochemical evolution are discussed. These processes first involve the scission of the C-N bond between the carbazole group and the tertiary carbon atom bearing the alkyl side-chain. Modifications of the chemical structure of PCDTBT, the evolution of its UV-visible absorbance, and its nanomechanical properties initiated by light irradiation are shown to be closely related.
Fichier non déposé

Dates et versions

hal-00812521 , version 1 (12-04-2013)

Identifiants

  • HAL Id : hal-00812521 , version 1

Citer

Aurélien Tournebize, Pierre-Olivier Bussiere, Pascal Wong-Wah-Chung, Sandrine Thérias, Agnès Rivaton, et al.. Impact of UV-visible light on the morphological and photochemical behavior of a low-bandgap poly(2,7-carbazole) derivative for use in high-performance solar cells. Advanced Energy Materials, 2013, 3, pp.487-487. ⟨hal-00812521⟩
127 Consultations
0 Téléchargements

Partager

More