On the size of attractors in $\mathbb{P}^k$ - Archive ouverte HAL
Pré-Publication, Document De Travail Mathematische Zeitschrift Année : 2014

On the size of attractors in $\mathbb{P}^k$

Sandrine Daurat
  • Fonction : Auteur
  • PersonId : 938906

Résumé

Let $f$ be a holomorphic endomorphism of $\mathbb{P}^k(\C)$ having an attracting set $\A$. In this paper, we address the question of the ''size" of $\A$ in a pluripolar sense. We introduce a conceptually simple framework to have non-algebraic attracting sets. We prove that adding a dimensional condition, these sets support a closed positive current with bounded quasi-potential (which answers a question from T.C. Dinh). Therefore, they are not pluripolar. Moreover, the examples are abundant on $\mathbb{P}^2$.
Fichier principal
Vignette du fichier
small_topological_degree_maps.pdf (822.99 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00808654 , version 1 (09-04-2013)

Identifiants

Citer

Sandrine Daurat. On the size of attractors in $\mathbb{P}^k$. 2013. ⟨hal-00808654⟩
347 Consultations
139 Téléchargements

Altmetric

Partager

More