Algorithme primal-dual de points intérieurs pour l'estimation pénalisée des cartes d'abondances en imagerie hyperspectrale
Résumé
L'estimation des cartes d'abondances en imagerie hyperspectrale nécessite de résoudre un problème d'optimisation sous des contraintes de positivité et d'additivité. Nous nous plaçons dans le cadre où les spectres des composants présents au sein de l'image ont été préalablement estimés par un algorithme d'extraction des pôles de mélange. Afin de réduire le temps de calcul, nous proposons un algorithme rapide de points intérieurs de type primal-dual pour l'estimation de ces cartes. En comparaison avec la méthode de référence FCLS, l'algorithme proposé présente l'avantage d'un coût de calcul réduit. Un second avantage est de pouvoir traiter le cas d'un critère pénalisé favorisant la régularité spatiale des cartes d'abondances. Des exemples sur des données synthétiques et réelles illustrent les performances de cet algorithme.
Origine | Fichiers éditeurs autorisés sur une archive ouverte |
---|
Loading...