Characterization of artificially dried biofilms for air biofiltration studies
Résumé
One of the main problems associated with the operation of air biofilters is the loss of performance caused by drying of the bioactive support, as the removal capacity of contaminants by the microorganisms is dependent on their water content. In this work, biofilms from a microbial consortium adapted to toluene were grown on stainless steel slides. The biofilms were dried in stoppered flasks with saturated saline solutions to obtain final water activities of 97.4 %, 83.9 %, 74.8 % and 32 %. The biofilms were characterized by a sorption isotherm Type III with toluene; the water desorption isotherm was fitted to the BET model and the biofilm hydrophobicity was also determined. Specific oxygen consumption rates decreased at lower Aw from 60 mu g O-2/mg protein/h to zero activity. Biofilm activity, represented by a toluene consumption rate, and others physical properties presented a critical point between Aw 0.84 and 0.97. Biological activity of dried biofilms was restored either partially or completely, depending on the extent of drying and rewetting method.