Une approche en programmation par contraintes pour la classification non supervisée - Archive ouverte HAL Access content directly
Conference Papers Revue des Nouvelles Technologies de l'Information Year : 2013

Une approche en programmation par contraintes pour la classification non supervisée

Abstract

Dans cet article, nous abordons le problème de classification non supervisée sous contraintes fondé sur la programmation par contraintes (PPC). Nous considérons comme critère d'optimisation la minimisation du diamètre maximal des clusters. Nous proposons un modèle pour cette tâche en PPC et nous montrons aussi l'importance des stratégies de recherche pour améliorer son efficacité. Notre modèle basé sur la distance entre les objets permet de traiter des données qualitatives et quantitatives. Des contraintes supplémentaires sur les clusters et les instances peuvent directement être ajoutées. Des expériences sur des ensembles de données classiques montrent l'intérêt de notre approche.
No file

Dates and versions

hal-00807631 , version 1 (04-04-2013)

Identifiers

  • HAL Id : hal-00807631 , version 1

Cite

Thi-Bich-Hanh Dao, Khanh-Chuong Duong, Christel Vrain. Une approche en programmation par contraintes pour la classification non supervisée. Extraction et gestion des connaissances (EGC'2013), Jan 2013, Toulouse, France. pp.55-66. ⟨hal-00807631⟩
71 View
0 Download

Share

Gmail Mastodon Facebook X LinkedIn More