The half space property for cmc 1/2 graphs in $\mathbb E(-1,\tau)$
Résumé
In this paper, we prove a half-space theorem with respect to constant mean curvature 1/2 entire graphs in E(-1,\tau). If \Sigma is such an entire graph and \Sigma' is a properly immersed constant mean curvature 1/2 surface included in the mean convex side of \Sigma then \Sigma' is a vertical translate of \Sigma. We also have an equivalent statement for the non mean convex side of \Sigma.
Domaines
Géométrie différentielle [math.DG]Origine | Fichiers produits par l'(les) auteur(s) |
---|