The half space property for cmc 1/2 graphs in $\mathbb E(-1,\tau)$ - Archive ouverte HAL
Journal Articles Calculus of Variations and Partial Differential Equations Year : 2015

The half space property for cmc 1/2 graphs in $\mathbb E(-1,\tau)$

Abstract

In this paper, we prove a half-space theorem with respect to constant mean curvature 1/2 entire graphs in E(-1,\tau). If \Sigma is such an entire graph and \Sigma' is a properly immersed constant mean curvature 1/2 surface included in the mean convex side of \Sigma then \Sigma' is a vertical translate of \Sigma. We also have an equivalent statement for the non mean convex side of \Sigma.
Fichier principal
Vignette du fichier
pslhalf.pdf (369.11 Ko) Télécharger le fichier
Origin Files produced by the author(s)

Dates and versions

hal-00802642 , version 1 (02-02-2023)

Identifiers

Cite

Laurent Mazet. The half space property for cmc 1/2 graphs in $\mathbb E(-1,\tau)$. Calculus of Variations and Partial Differential Equations, 2015, 52 (3-4), pp.661-680. ⟨10.1007/s00526-014-0728-7⟩. ⟨hal-00802642⟩
67 View
45 Download

Altmetric

Share

More